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Abstract 

Memory plays a major but underexplored role in judgment and decision making (JDM). 

Studying eye movements—especially how people look at empty spatial locations when 

retrieving from memory information previously associated with those locations—provides 

useful information about how memory influences JDM. This so-called looking-at-nothing 

behavior is thought to reflect memory-driven allocation of attention. However, eye 

movements are also guided toward salient visual stimuli, such as test items presented on a 

screen. It is unclear how these multiple sources of activation combine to guide looking-at-

nothing in JDM. We investigated this question in two experiments in which participants 

solved multi-attribute categorization tasks using an exemplar-based decision strategy. In the 

first experiment, we tested how the occurrence and the strength of looking-at-nothing vary 

with the presentation format and the amount of training participants received. Looking-at-

nothing occurred during categorizations when test-item information was presented auditorily 

and visually, but for the latter only after visual information was removed from the screen. It 

occurred both when training items were learned by heart and when they were presented 10 

times on the screen. A second experiment revealed that an explicit instruction to imagine 

retrieval-relevant information during categorizations increased looking-at-nothing but did not 

change the decision-making process. The results shed light on the interaction between eye 

movements and attention to information in memory during JDM that can be explained in light 

of a shared priority map in memory. A detailed understanding of this interaction forms the 

basis for using eye movements to study memory processes in JDM. 

 

Keywords: memory, attention, similarity, eye movements, decision making  
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When the Eyes Have It and When Not: How Multiple Sources of Activation Combine to 

Guide Eye Movements During Multi-Attribute Decision Making 

Memory is prevalent in all stages of the judgment and decision-making (JDM) 

process. For instance, people can readily classify an unfamiliar painting as being the work of a 

known artist by retrieving similar past instances of the artist’s work from memory. When 

deciding whether to take their car or bike to work, before taking the bike people might recall 

the weather conditions of similar days in the past and whether they were fortunate enough not 

to get wet. When judging the suitability of job applicants, people might consider similar 

applicants they have seen in the past and recall their performance. Usually, decision options 

or alternatives (e.g., job applicants) are characterized by one or more attributes (e.g., language 

skills) taking different values (e.g., French or Italian). These attributes frequently form the 

basis of the decision process as they can be used, for instance, to determine which past 

instances (e.g., job applicants with similar skills) are retrieved from memory.  

Little is known about how memory processes influence JDM (Weber, Goldstein, & 

Barlas, 1995). One reason is that there have been no suitable methods for observing the 

retrieval process independently of the decision outcome. Recent research suggests that eye 

movements provide useful information about the role of memory during JDM (Orquin & 

Mueller Loose, 2013). In particular, studies based on the so-called looking-at-nothing (LAN) 

behavior have been able to observe retrieval processes almost unobtrusively (Ferreira, Apel, 

& Henderson, 2008; Richardson, Altmann, Spivey, & Hoover, 2009). LAN describes how 

people look back at empty spatial locations when retrieving information from memory that 

has been associated with those locations during encoding. Researchers have used this 

phenomenon to trace what information is retrieved from memory during a wide range of JDM 

tasks (Jahn & Braatz, 2014; Klichowicz, Strehlau, Baumann, Krems, & Rosner, 2020; 

Krefeld-Schwalb & Rosner, 2020; Pärnamets, Johansson, Gidlöf, & Wallin, 2016; Platzer, 

Bröder, & Heck, 2014; Renkewitz & Jahn, 2012; Rosner & von Helversen, 2019; Scholz, 
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Krems, & Jahn, 2017; Scholz, von Helversen, & Rieskamp, 2015). In the pioneering study by 

Renkewitz and Jahn (2012), participants first learned attribute information about decision 

options that were arranged within spatial frames at distinct spatial locations on a computer 

screen. Later they were asked to choose between the options. During decision making, eye 

movements to the emptied spatial locations reflected information search in memory for the 

learned attribute information. This study demonstrates that eye movements based on the LAN 

behavior can reveal what information is activated in memory during JDM.  

Besides memory activation, eye movements are guided by visual features present in 

the stimulus environment (Awh, Belopolsky, & Theeuwes, 2012; Chun, Golomb, & Turk-

Browne, 2011; Henderson, 2017; Kowler, 2011; Theeuwes, 2010). That is, a decision maker’s 

attention is generally drawn to visually salient attributes of presented test items (Orquin, 

Bagger, & Mueller Loose, 2013; Rehder & Hoffman, 2005). Most studies applying LAN in 

JDM have used designs that limit the influence of visual information from the very beginning 

by, for instance, presenting test stimuli auditorily. However, most of the traditional JDM 

paradigms present test items visually. Little is known about how memory retrieval interacts 

with visual information processing in determining LAN behavior in JDM tasks. In addition, 

memory activation can also be modulated, for instance, through instructions given to 

participants or training of information that needs to be kept in memory. Therefore, a better 

understanding of how retrieval processes on the one hand and visual information processing 

on the other influence eye movement behavior is crucial if one wants to use LAN as a process 

measure to study memory-based JDM.  

The main goal of this research was to devise and test a theoretical framework for 

exploring how memory retrieval interacts with visual information processing to produce LAN 

in memory-based JDM. The framework builds on the idea of a “shared priority map” that 

predicts where people will look during memory retrieval (Hedge & Leonards, 2013; Hedge, 

Oberauer, & Leonards, 2015; Theeuwes, Belopolsky, & Olivers, 2009). The key idea is that 
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during JDM, information that is kept in memory and visual information compete for 

activation in a shared spatially organized representation held in memory. The spatial position 

in the memory representation that receives the highest activation will determine the target of 

the next fixation in the visual world. A secondary goal was to understand to what extent LAN 

can be used as a measure of memory processes in JDM tasks.  

In the following, we first review the literature on LAN and LAN’s relation to memory 

retrieval. Then, we detail the categorization decision task we used as a testbed and the 

assumed memory processes, introduce the framework and our predictions for LAN during the 

decision process, and report two experiments to test our predictions. 

LAN and Memory Retrieval 

LAN has been intensively studied in relation to memory retrieval (e.g., Altmann, 

2004; Altmann & Kamide, 2009; Bone et al., 2019; de Groot, Huettig, & Olivers, 2016; 

Foerster, 2018; Johansson, Holsanova, Dewhurst, & Holmqvist, 2012; Johansson, Holsanova, 

& Holmqvist, 2006; Johansson & Johansson, 2014, 2020; Johansson, Oren, & Holmqvist, 

2018; Jones, Kuipers, Nugent, Miley, & Oppenheim, 2018; Kinjo, Fooken, & Spering, 2020; 

Kumcu & Thompson, 2020; Laeng, Bloem, D’Ascenzo, & Tommasi, 2014; Martarelli & 

Mast, 2011, 2013; Richardson & Kirkham, 2004; Richardson & Spivey, 2000; Scholz, 

Klichowicz, & Krems, 2018; Scholz, Mehlhorn, & Krems, 2016; Spivey & Geng, 2001; 

Wantz, Martarelli, & Mast, 2016; Wynn, Ryan, & Buchsbaum, 2020). In an experiment by 

Richardson and Spivey (2000), participants listened to semantic statements while a visual 

symbol appeared in one spatial location on a computer screen. For example, participants heard 

the sentence “Claire gave up her tennis career when she injured her shoulder” while a 

spinning cross was presented in the top-left quadrant of the screen. After listening to four 

different sentences, each associated with a different spatial position, the retrieval phase 

followed. That is, the screen went blank and participants answered a question about one of the 
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presented sentences. Participants exhibited LAN; they looked more often to the area 

associated with the probed sentence during the retrieval phase than to any other area.  

The LAN behavior can be explained as resulting from an overlap between processes 

engaged at encoding and retrieval of information stored in memory. During the encoding of 

the information, spatial information of where the information was presented (e.g., a quadrant 

on a computer screen) is stored along with semantic information (e.g., Claire’s injury) in an 

episodic memory representation (in the form of object–location bindings). Retrieving parts of 

the episodic trace, for example, by probing parts of the stored information, leads to the 

reactivation of associated location information. This, in turn, elicits an eye movement to the 

location where a visual object was presented during encoding, even if it is no longer present 

during the retrieval or decision-making phase (for an overview see Wynn, Shen, & Ryan, 

2019). 

Memory-Based JDM 

Memory processes have been investigated in a variety of decision and judgments tasks 

(e.g., Albrecht, Hoffmann, Pleskac, Rieskamp, & von Helversen, 2020; Bröder, Newell, & 

Platzer, 2010; Erickson & Kruschke, 1998; Hoffmann, von Helversen, & Rieskamp, 2013, 

2014, 2016; Juslin, Jones, Olsson, & Winman, 2003; Juslin, Karlsson, & Olsson, 2008; Juslin, 

Olsson, & Olsson, 2003; Medin & Schaffer, 1978; Nosofsky, 1988; Nosofsky & Palmeri, 

1997; Olsson, Enkvist, & Juslin, 2006; Persson & Rieskamp, 2009; Rieskamp & Otto, 2006; 

Rouder & Ratcliff, 2004; von Helversen & Rieskamp, 2008, 2009). The influence of memory 

in these tasks is frequently described by exemplar-based accounts (Hahn & Chater, 1998; 

Pothos, 2005). There are a variety of exemplar-based models for JDM, but the common idea 

is that new objects are classified by relying on memory for similar instances, so-called 

exemplars. For instance, when evaluating the suitability of a job applicant, an exemplar-based 

account would assume that people retrieve similar job candidates (exemplars) from memory 

and how well they performed in a previous interview (criterion). The decision is then based 
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on the category of the most similar exemplar. Theoretical accounts postulate that exemplars 

are stored as episodic memory traces in long-term memory (Dougherty, Gettys, & Ogden, 

1999; Estes, 1986; Hintzman, 1984, 1986; Nosofsky, 1988). Similarity is determined by 

matches or distances between features of the target object and the exemplar. The features or 

attributes of the target object then function as retrieval cues for the exemplars. The higher the 

similarity between an exemplar and a test item, the higher its activation in memory.  

Scholz et al. (2015) studied exemplar-based categorizations with LAN. They tested the 

hypothesis that if people use their memories about past instances to make decisions, LAN 

should reflect the similarity between decision options and exemplars stored in memory. 

Participants first memorized attribute values of four job candidates and how well they 

performed in a previous interview. In subsequent test trials, they judged the suitability of new 

candidates that varied in their similarity (i.e., the number of shared attribute values) to the 

previously learned exemplars. Test items were presented auditorily while participants saw 

only the empty rectangles of the trained exemplars on the screen. Results showed that when 

using an exemplar-based decision strategy, participants fixated longer on the previous 

location of exemplars that resembled the new candidates than on the location of dissimilar 

exemplars. A later study using a judgment task established a direct link between LAN and the 

resulting behavioral judgment (Rosner & von Helversen, 2019). The more participants looked 

toward high-performing exemplars, the higher their judgments, suggesting that LAN is 

directly linked to exemplar-based memory processes in JDM. It reflects the similarity between 

new and past instances stored in memory. Before we explain in more detail why similarity 

and other task factors might influence LAN, we first introduce the framework of a shared 

priority map. 

A Shared Priority Map of Attention During JDM 

There is general agreement that both what people see in the world (i.e., salient pieces 

of information) and what they retrieve from memory determine where they look (for an 



EYE MOVEMENT GUIDANCE DURING MULTI-ATTRIBUTE JDM  
 

9 

overview see Kowler, 2011). How the cognitive system handles this issue is arguably a 

difficult computation (Itti & Koch, 2001). On the basis of previous research, Theeuwes and 

colleagues (2009) proposed a solution by assuming that different sources of activation create 

neural signals in a spatially organized representation held in memory, a so-called shared 

priority map. The spatial location that receives the highest neural activation then determines 

the target for the next fixation (Figure 1).

 

Figure 1. Schematic overview of factors influencing attentional allocation during memory-

based judgment and decision making (JDM). Left: A typical information board used to study 

eye movements during JDM. Middle: Assumed memory processes. The spatial location that 

receives the highest neural activation determines the target for the next fixation. Right: 

Expected eye movements based on looking-at-nothing. Gray dots represent fixations, with 

larger dots indicating longer fixations. 

 

Empirical evidence for an interaction effect of memory-driven and stimulus-driven 

attentional allocation on eye movements was found, for instance, by Hedge and Leonards 

(2013). In their study, participants had to trace the position of an invisible dot in an empty 

3 × 3 grid with several updating steps. Each updating operation was indicated by an arrow cue 
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appearing in the center of the screen that stayed visible until participants requested the next 

update. For instance, a blue dot was initially located in the top-right position of the grid. The 

arrow cue, always presented in the center of the screen, pointed toward the bottom of the 

screen. The arrow indicated that the invisible blue dot moved to the middle right position on 

the grid. Thus, the participant needed to mentally update the position of the dot from the top-

right to the middle-right grid position. People looked both at the visible arrow location and at 

empty previous and new locations of the updated object. This suggests that eye movement 

behavior was guided by two signals. First, by information that was visible on the screen (the 

arrow indicating the next updating operation), and second by information retrieved from 

memory leading to LAN. In Hedge et al. (2015), the authors explained these findings in light 

of a shared priority map. Visual information presented in the center of the screen leads to an 

activation peak in the center of the shared priority map. The previous and next locations of the 

to-be-updated object are activated in working memory and thereby create activations in the 

previous and next locations represented in the shared priority map (i.e., the top-right and 

middle-right grid positions). The location on the map with the highest resulting activation 

then determines the spatial location toward which the next eye movement is directed in a 

winner-takes-all fashion. 

From the perspective of our proposed framework, the results of Scholz et al. (2015) 

can be explained by the target object activating similar exemplars in memory, which increases 

activations of the spatial locations of these exemplars in the shared priority map and 

ultimately leads the eyes to the empty spatial locations of the most similar exemplar. That is, 

the higher the similarity between a test item and an exemplar, the higher the activation of 

locations of similar exemplars in memory (e.g., Dougherty et al., 1999) on the shared priority 

map and, consequently, the more LAN can be observed. In Scholz et al. (2015), the screen 

was almost devoid of any visual information, because information about the test items was 
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presented auditorily; eye movements thus reflected the memory-driven activations stemming 

from retrieving similar instances from memory.  

In the following we consider how manipulating different sources of activation in the 

shared priority map should influence LAN according to the framework. We first consider two 

manipulations likely to affect the strength of memory-driven activations—memory training 

and task instructions—and then one manipulation likely to affect the strength of activations 

competing with memory-driven activations—the presentation format.  

Memory Training 

In memory-based JDM, participants usually work through a fixed number of training 

rounds. In each round each exemplar is judged once and receives outcome feedback 

(Hoffmann et al., 2013, 2014, 2016; Juslin et al., 2008; Juslin, Olsson, & Olsson, 2003). For 

instance, in the study by Hoffmann et al. (2014), exemplars were presented 10 times before 

participants entered the judgment phase. The use of exemplar memory becomes more likely, 

the more accurately participants can recall the exemplars (Hoffmann et al., 2014; Hoffmann, 

von Helversen, Weilbächer, & Rieskamp, 2018; Johansen & Palmeri, 2002). This 

enhancement may be explained through a more distinct memory representation (Rouder & 

Ratcliff, 2004) of the seen exemplars or by a larger number of stored memory traces for 

exemplars (Dougherty et al., 1999; Nosofsky & Palmeri, 1997). Since memory traces compete 

for retrieval in each trial (Nosofsky & Palmeri, 1997), a larger number of memory traces will 

reduce errors in decisions based on the retrieval of exemplars. Accordingly, if exemplars are 

learned by heart during training, this should increase their memory strength and activation in 

memory. 

In most LAN studies in the JDM literature, information about exemplars was learned 

by heart. For instance, participants had to correctly retrieve all attribute values in two 

consecutive rounds before proceeding with the experiment (Scholz et al., 2015; see also Jahn 

& Braatz, 2014; Platzer et al., 2014; Renkewitz & Jahn, 2012, for similar procedures). This 
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way participants had sufficient memories for both the exemplar information and the 

associations with spatial locations on the screen. Whether an increase in memory strength will 

influence LAN is unclear. Several studies have shown that LAN reliably occurs without 

extensive memory training for objects and their presentation locations (Hoover & Richardson, 

2008; Johansson et al., 2012, 2006; Kumcu & Thompson, 2020; Laeng & Teodorescu, 2002; 

Martarelli & Mast, 2011, 2013; Scholz et al., 2018, 2016). So far, only indirect evidence 

suggests that LAN may be sensitive to how well information is learned. It has been observed 

that LAN is more likely to occur when giving a correct than an incorrect response (Martarelli 

& Mast, 2011; Scholz et al., 2016). Last but not least, the relationship may have an inverted-U 

shape, as LAN can diminish when information is overlearned or responses can be given very 

quickly (Jones et al., 2018; Scholz, Mehlhorn, Bocklisch, & Krems, 2011; Wantz et al., 2016). 

Given the framework of the shared priority map and the idea that stronger representations lead 

to stronger activations in memory, we assume that the more strongly the exemplars are 

represented in memory, the stronger their activations on the shared priority map will be and 

consequently, the more likely LAN is to reflect similarity-based activations from memory. 

Task Instructions 

On the one hand, there is generally wide agreement that exemplar retrieval takes place 

automatically (e.g., Johansen & Palmeri, 2002), that is, without an explicit instruction to use 

an exemplar-based strategy (Hoffmann et al., 2013, 2014, 2016; Juslin et al., 2008; Juslin, 

Jones et al., 2003; Scholz et al., 2015). On the other hand, using exemplar memory during 

JDM can also be a deliberate decision strategy (Karlsson, Juslin, & Olsson, 2008) and can be 

explicitly instructed (e.g., Albrecht et al., 2020; Olsson et al., 2006; Scholz et al., 2015). 

Deliberate thinking about exemplars can make exemplar retrieval more likely, by increasing 

memory activations (Dougherty et al., 1999). Consequently, an explicit task instruction may 

activate similar exemplars in memory more strongly in comparison to leaving the process 

spontaneous. 
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Eye movements more generally seem to be sensitive to task instructions. Shih, 

Meadmore, and Liversedge (2012) presented participants with photographs of household 

items with or without participants being aware that their memories about the seen objects will 

be tested. Under an explicit memory instruction, older adults exhibited more memory-

enhancing viewing behavior, indicating that eye movements and memory can be modulated 

through task instructions. It is unclear if LAN is sensitive to task instructions. In studies on 

mental imagery in which LAN has often been observed, participants received an explicit 

instruction to imagine a seen object with their “inner eye,” before being probed on some of 

the object features (Bone et al., 2019; Brandt & Stark, 1997; Johansson et al., 2006; Kosslyn, 

1994; Martarelli & Mast, 2013; Wantz et al., 2016). However, leaving the instruction implicit 

can also elicit LAN (Altmann, 2004; Renkewitz & Jahn, 2012; Richardson & Kirkham, 2004; 

Richardson & Spivey, 2000; Rosner & von Helversen, 2019; Scholz et al., 2015).  

To our knowledge, nobody has yet explored if task instructions make a difference in 

LAN. Given the framework of the shared priority map and research showing that effortful 

deliberations can increase memory activation for exemplars, we assume that an explicit task 

instruction to mentally imagine the most similar exemplar would increase activations for this 

exemplar. Thus, with explicit activations LAN should more strongly reflect similarity-based 

activations from memory. 

Presentation Modality 

In the majority of previous LAN studies, test items were presented auditorily to leave 

the screen almost devoid of any visual information (the blank screen paradigm, e.g., Altmann, 

2004), which is in line with literature suggesting a tight link between eye movements and the 

processing of auditorily presented items (Huettig, Mishra, & Olivers, 2012; Huettig, Olivers, 

& Hartsuiker, 2011). However, this procedure stands in contrast to more traditional paradigms 

used to study (exemplar-based) decision processes. There, new test items are presented 
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visually, as either verbal descriptions or pictures (Bröder et al., 2010; Hoffmann et al., 2013, 

2014, 2016; Juslin, Jones et al., 2003; von Helversen & Rieskamp, 2009). 

What does this mean for observing LAN in JDM? With an auditory stimulus 

presentation it is possible that language processing contributes to LAN in addition to the 

retrieval of similar exemplars from memory. Although, Scholz et al. (2015) showed that when 

people used a rule-based strategy that did not draw on memory retrieval to the same extent as 

an exemplar-based strategy, people did not show LAN even when test items were presented 

auditorily, which suggests that language processing on its own is not enough to drive LAN. 

Nevertheless, language processing may add to activations stemming from memory retrieval 

and thus influence whether LAN occurs and how much it reflects similarity-based activation.  

One way to remove additional activations resulting from processing auditorily 

presented information when asking participants to rely on the retrieval of exemplars during 

JDM could be to present information about test items as visually displayed verbal 

descriptions. However, given that new visual information is a strong cue for inducing visual 

attention (e.g., Chun et al., 2011), visual information may compete with memory-driven 

activations on the shared priority map. In turn, LAN to the exemplar locations may become 

weaker or vanish completely because people might look only at the screen location where this 

salient and relevant visual information is presented. Indeed, a decrease in LAN for visual 

materials has been reported by Jones et al. (2018), who tested LAN in a cued recall task to 

study the ability to learn new phonological associations. LAN during the recall of learned 

associations did not occur in about one third of all trials. Accordingly, when decision items 

are presented visually, activations resulting from the visual presentation format may win out 

in guiding eye movements, leading to a decrease in eye movements guided by memory 

retrieval. That is, even though people would still be retrieving exemplars from memory, this 

might no longer be reflected in their eye movements. However, the framework of the shared 

priority map also suggests that if visual information is removed after it was perceived, 
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memory processes may guide eye movements again, thus increasing LAN behavior. Indeed, 

recently Wynn et al. (2020) found that eye movements reflected memory processes after the 

removal of visual stimuli from screen. 

The Present Research 

The goal of this research was to test to what extent eye movements during JDM are 

driven by different sources of activation. We explored this question in two experiments using 

a categorization decision task. Participants needed to classify objects described on several 

attributes into one of two categories. In this task, people often rely on an exemplar-based 

decision strategy, making it ideal for our purposes (Hoffmann et al., 2016; Juslin et al., 2008; 

Juslin, Jones et al., 2003; Karlsson et al., 2008; Nosofsky & Palmeri, 1997; Persson & 

Rieskamp, 2009; von Helversen & Rieskamp, 2009).  

In Experiment 1 we considered presentation format (auditory vs. visual) and memory 

training (exemplar training and/or criterion learning). In Experiment 2, we investigated the 

effect of explicit mental imagery by instructing participants either to use an intuitive strategy 

or to retrieve exemplars deliberately. In both experiments we varied the similarity between the 

decision object under evaluation and the trained exemplars to investigate how strongly LAN 

reflects similarity-based memory activations. 

Previous LAN research has mainly focused on testing the quality of LAN. Here, we 

extended this approach and considered two main dependent variables: in terms of quality, 

LAN strength and, in addition, a quantity measure, LAN occurrence.  

LAN strength measures the extent to which people look more at screen locations 

associated with the retrieved pieces of information (“relevant locations”) than to locations that 

are irrelevant for a given trial (e.g., Johansson et al., 2012, 2006; Martarelli & Mast, 2011; 

Scholz et al., 2016) and thus reflects the memory-driven activation strength of information. 

Accordingly, in line with previous research (Rosner & von Helversen, 2019; Scholz et al., 

2015), in the present study LAN strength should be a function of exemplar similarity. More 
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precisely, we expected that the higher the similarity between a test item and an exemplar, the 

more participants would look to the location of the most similar exemplar and the less they 

would look to less similar (i.e., irrelevant) exemplar locations. Furthermore, taking into 

consideration the findings of Rosner and von Helversen (2019), we assumed that the higher 

the LAN strength for a category decision, the more likely it would be that this category would 

be chosen. Our new predictions are that LAN strength might also be higher with exemplars 

that are more readily available in memory, which is the case with more memory training, and 

with an explicit imagery instruction.  

To measure LAN quantity, we looked at LAN occurrence. We defined LAN as 

occurring if participants looked at least once toward one of the exemplar locations during 

decision making.1 If, as proposed in the framework of the shared priority map, the location of 

the visually presented stimulus material on the screen wins the competition for participants’ 

attention, we should see LAN reduced in its quantity. That is, participants will not look at the 

exemplar locations, regardless of the extent to which they retrieve exemplars from memory. 

Conversely, LAN will be more likely to occur the less visual information is presented on the 

screen and when visual information is removed from the screen.  

Experiment 1A and B 

The participants’ task was to decide whether to invite job candidates for an interview 

or reject them based on information on four attributes. They first learned (via feedback) in a 

criterion training phase which previous job candidates (the training exemplars) had been 

invited and then continued with a test phase, in which they had to make decisions for new 

candidates. Experiment 1 manipulated the amount of training participants received prior to 

this training phase. They either first learned the attributes of the exemplars by heart (exemplar 

learning) or started directly with the decision training phase (only criterion learning). Training 

                                                
1 Richardson and Spivey (2000) applied this measure to test if participants answered more correctly 

when looking at least once to the relevant location. Here, we aimed to use it as an indicator of whether the 
behavior is shown at all. 
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was varied between participants. Furthermore, we manipulated the presentation format during 

the decision-making phase. In one condition, information about new job applicants (test 

candidates) was presented auditorily while the screen contained only empty rectangles. In the 

other conditions, test candidates were presented visually, that is, as verbal descriptions in the 

center of the screen. As illustrated in Figure 2, we had three conditions in Experiment 1A 

(visual with exemplar learning, auditory, and visual without exemplar learning); in the visual 

conditions, visual presentation lasted until participants decided. In Experiment 1B we added 

two more visual conditions, in which visual presentation of attribute values ended after a fixed 

amount of time to test whether LAN would occur when visual stimuli were removed. 

Presentation format was varied between participants. Test candidates differed in their 

similarity in attribute values (defined as the number of matches) to the training exemplars. 

The factor similarity thus varied within participants. Eye movements were recorded during the 

test phase. At the end of the experiment, all participants were tested on their long-term 

memories about the location of attribute values (location memory test). The experiment lasted 

on average 33.2 min (SD = 12.4). The study design and methods were approved by the ethics 

committee of the University of Zurich. All materials and data are available at 

https://osf.io/zpc2s/.  
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Figure 2. Experimental procedure. All participants worked through the criterion learning 

phase, test phase, and location memory test. Additionally, participants in the visual with 

exemplar learning condition (Ex. Visual condition, top row) received exemplar training. The 

presentation modality during the test phase varied between conditions. Solid black frames 

contained attribute values. Finance, French, Web design, and LaTeX refer to attributes. See 

text for details. 

 

Participants 

Previous studies found large effects (e.g., hp2 ≈ .29) regarding the influence of 

similarity on eye movements (Scholz et al., 2015). A sample of at least 23 participants in each 
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condition was needed to ensure that we would have appropriate power to find an effect of 

medium size of similarity on LAN (hp2≈.07 requires N=23 to reach a power of 80%; see Faul, 

Erdfelder, Lang, & Buchner, 2007). 

Overall, 134 participants at the University of Zurich took part in the study for course 

credit or financial compensation [15 Swiss francs (CHF) per hour]. One participant did not 

meet the learning criterion in the first experimental phase and due to a technical error, data of 

another participant were corrupted. In total, we could analyze the data of 132 participants 

(Experiment 1A: 78 participants, 23 male, Mage = 26.8 years, range 19–57 years; Experiment 

1B: 54 participants, 18 male, Mage = 26.2 years, range 18–52 years2). All participants had 

normal or corrected-to-normal vision. Mean tracking accuracy in the test trials was very high 

at 0.7° of visual angle. All participants signed informed consent forms. 

Apparatus 

Participants were seated in front of a 22-inch computer screen (1,680 × 1,050 pixels) 

at a distance of 700 mm and instructed to position their head in a chin rest. The eye tracker 

system SMI iView RED sampled data from the right eye at 500 Hz and recorded with iView 

X 2.8 following a five-point calibration. Fixation detection was done with IDF Event Detector 

9 (SMI, Teltow) using a peak velocity threshold of 30°/s and a minimum fixation duration of 

80 ms.  

Materials 

Study materials of Experiment 1 consisted of four training exemplars and 44 

additional test items (test candidates). All items contained information on four attributes 

(Figure 3): previous work experience (with the attribute values automotive industry, building 

industry, finance, and food service), language skills (with the attribute values French, 

Mandarin, Russian, and Spanish), professional training (with the attribute values human 

                                                
2 Because of a technical error, demographic data were not recorded for two participants. 
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resources, marketing, Web design, sales), and possession of computer skills (with the attribute 

values HTML, SQL, LaTeX, and GIMP). Test items varied in their similarity to the 

exemplars, ranging from two to four matches in attribute values with one exemplar (two 

matches: 24 items; three matches: 20 items; four matches: 4 items). For instance, a test item 

that matched on two attributes with one training candidate from one category matched on two 

other attributes with one training candidate from the other category. Accordingly, items with 

two matches were always ambiguous. Another 20 items shared three values with one training 

candidate and one value with another training candidate. That is, they were either more 

similar to an invited or a rejected training candidate (10 items each). Additionally, the four 

training items were included in the test set. Test materials were fully balanced. That is, each 

attribute value was tested similarly often and each training candidate was equally often the 

training candidate with the highest number of matches (see Appendix A for a full list of 

items). 

 

Figure 3. Exemplars consisting of information about four training candidates (two invited and 

two rejected exemplars). Each exemplar was presented in one of the four screen quadrants. In 

this example, candidates in the top row were invited and in the bottom row rejected. 

Rectangles contain attribute values (see text). Note that the size of the exemplar on the screen 

is increased to increase readability.  
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Each exemplar was presented in one of the four screen quadrants. The distance from the 

center of the screen to the center of each of the four exemplars was 9.62° of visual angle (576 

pixels). Attribute values were presented as black text in rectangles with white borders and a 

light gray background. Each rectangle had a size of 2.84° × 1.17° of visual angle (170 × 70 

pixels). The center of each of the four rectangles containing the information describing one 

exemplar had a distance of 2.21° of visual angle (132 pixels) from the center of each 

quadrant. Visual materials were presented in four balanced orders, varying the positions of the 

exemplars on the screen and the order of attribute values between participants. During the 

subsequent test phase, participants saw only the empty rectangles on the screen. In the 

condition with auditory stimulus presentation during the test phase, stimuli were read aloud 

from left to right and from top to bottom, following the visual presentation of exemplars 

during criterion learning. In the exemplar and criterion learning phases, feedback was 

provided with a high- and low-pitched tone. 

Procedure 

At the beginning of the experiment, the eye tracker was calibrated to check if eye 

movements could be recorded to a sufficient quality (< 1.5° of visual angle). 

Exemplar Learning 

Participants in the condition with exemplar learning (henceforth called ex. visual, see 

Figure 2, top row) were instructed to first memorize the attribute information about the four 

exemplars presented in rectangles on the screen. To do this, they first saw all the information 

on the screen and could study it until they pressed a button to start a training phase in which 

they could test their knowledge about the four training exemplars. During these exemplar 

learning trials, only empty rectangles were visible. Attribute values were presented auditorily 

and in random order. In each trial, participants heard the value of an attribute (e.g., “French”) 

and had to indicate the rectangle to which it belonged by clicking with the mouse on the 



EYE MOVEMENT GUIDANCE DURING MULTI-ATTRIBUTE JDM  
 

22 

rectangle (e.g., the top-right rectangle of the top-left candidate; see Figure 3). They received 

visual and auditory feedback on their response.3 One training block consisted of a test of all 

16 pieces of information (4 exemplars × 4 attribute values). After four training blocks, all the 

attribute information became visible again. Learning continued until all the information was 

remembered correctly in two consecutive blocks or after 20 blocks with the last 2 blocks 

resulting in an accuracy of at least 95% correct. Participants in the Ex. Visual condition took 

on average 15.6 min (SD = 3.3) and on average 6.8 blocks (SD = 1.3) to complete the task.  

Criterion Learning 

In the criterion learning phase, participants learned how each exemplar had been 

evaluated by making decisions and receiving feedback. In each criterion learning trial, 

participants first indicated that they were ready for the next trial. Next, they looked at a 

fixation cross in the center of the screen for 1.5 s. Then, participants saw the attribute values 

of one training candidate while the rectangles of all the training candidates remained empty 

(see Figure 2, second column). After 5 s, they were prompted to indicate their choice by 

pressing the left mouse button to invite the candidate or the right button to reject. There was 

no time restriction during criterion learning. Afterward, they received visual and auditory 

feedback. A training block ended after each candidate had been judged once. Participants in 

the Ex. Visual condition, who had already received training on the attribute values during 

exemplar learning, worked through five training blocks. Participants in all other conditions 

worked through 10 training blocks. These participants additionally received the verbal 

instruction that they should also memorize the attribute values as they might need this 

information for the test phase in which they would have to decide about new job candidates. 

Criterion learning lasted on average 7.3 min (SD = 0.4) in the Ex. Visual condition and 14.5 

                                                
3 Detailed descriptions of the feedback procedure can be found in the online supplemental materials at 

https://osf.io/zpc2s/. 
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min (SD = 4.0) in all other conditions. Over all conditions, after an average of 2.4 blocks (SD 

= 1.1), participants had learned to correctly classify all candidates.  

Test Phase 

At the beginning of each trial, participants indicated if they were ready to start the next 

trial. This was followed by a fixation cross that appeared in the center of the screen for 1.5 s. 

Next, participants saw the screen with the empty rectangles of the four candidates (see Figure 

2, third and fourth columns). They were presented with attribute values of a test candidate and 

instructed to decide whether to invite the candidate. The presentation modality during test 

trials varied between conditions. In the Ex. Visual and Visual conditions, test items were 

presented in the center of the screen and were visible until the participant responded. In the 

Auditory condition, the center of the screen was empty. Participants heard the attribute values 

of the new test item in sequential order. In Experiment 1B, new test items were visible on the 

screen but disappeared either after 3 s (3-s Visual) or after 1.5 s (henceforth called 3-s Visual 

and 1.5-s Visual conditions). Presentation times were pretested in a pilot experiment and 

chosen to be lower than typical response times in these tasks but long enough to be readable. 

After the attribute information for the test items had disappeared, participants saw only the 

empty rectangles. Participants judged the 48 test items once. Over all conditions, the test 

phase lasted on average 7.9 min (SD = 1.1). Eye movements were recorded throughout the 

test phase. 

Location Memory Test 

At the end of the experiment, participants were asked to remember the attribute values 

of the training candidates. Therefore, they saw the screen with the empty rectangles of the 

four training candidates (Figure 2, last column). Attribute values were presented auditorily 

and in random order. After hearing an attribute value, participants had to click on the 

rectangle where they thought the attribute value was presented during criterion learning (and 
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during exemplar learning for participants in the Ex. Visual condition). The memory test ended 

after participants responded to all 16 attribute values once and without feedback. 

Results 

The aim of Experiment 1A was twofold: to test (a) if learning exemplar information by 

heart versus incidentally during criterion learning leads to more LAN in terms of the strength 

of the phenomenon, and (b) if LAN is reduced in its occurrence when new test items are 

presented visually in comparison to auditorily. Experiment 1B aimed to test if reducing the 

duration of visual information presentation can increase the occurrence of LAN. We 

furthermore aimed at directly linking LAN to categorization behavior.  

In a first step, we analyzed how well participants performed in the categorization task, 

as our manipulations may affect not only LAN but also performance in the task itself or the 

location memory performance. We assumed that memory training could lead to better 

memories about exemplars in comparison to incidental learning, which could result in higher 

categorization accuracy and location memory performance. Whereas test items that were 

identical to trained exemplars may be classified more rapidly in the visual conditions, because 

of the sequential nature of auditorily presented materials, response time may be prolonged in 

the Auditory condition, which in turn could influence the probability of LAN occurring. 

Analyzing performance measures is thus important to understand LAN during JDM. 

Preparatory Data Analyses and Rationale for the Analyses  

Seven participants performed at chance level or worse during the test phase and were 

therefore excluded from further analyses. For the remaining 125 participants and trials, five 

trials (0.08% of trials) were excluded because response times were longer than 40 s. Note, 

mean response times were much lower: M = 5.4 s (SD = 1.6). In 21 trials (0.35% of trials), no 

gaze data were recorded (e.g., due to participants closing their eyes or looking off the screen); 

these trials could therefore not be analyzed.  



EYE MOVEMENT GUIDANCE DURING MULTI-ATTRIBUTE JDM  
 

25 

For the gaze analyses, we drew four rectangular areas of interest (AOIs) around each 

of the four exemplar locations and the center of the screen where the test items were presented 

in the visual conditions (see Figure 2). Each exemplar AOI had a size of 7.69° × 4.01° of 

visual angle (460 × 240 pixels). The size of the exemplar AOI exceeded the outer borders of 

each of the four rectangles describing one exemplar by 0.25° of visual angle (15 pixels). 

We used a mixed-model approach to analyze the data. Binomially distributed 

dependent variables (e.g., categorization accuracy) were analyzed with a generalized linear 

mixed model (GLMM) analysis with a logistic link function and Laplace approximation of 

parameter values. P values were estimated with the likelihood ratio test and sum-of-squares 

contrast coding. If the predicted variable was continuous (e.g., response times), we used linear 

mixed modeling. The latter models were fitted using residual maximum likelihood estimation. 

Fixed effects were evaluated via Satterthwaite approximation of degrees of freedom and sum-

of-squares contrast coding. We aimed at implementing the maximal random effects structure 

justified by the design but also had to take model complexity into account (Barr, Levy, 

Scheepers, & Tily, 2013). With the exception of the analysis of LAN occurrence, which 

contains only by-subject random intercepts, all other analyses included by-subject and by-

item random intercepts. Analyses were performed with R (R Core Team, 2018) and the 

following packages: lme4 (Bates, Maechler, Bolker, & Walker, 2015), afex (Singmann, 

Bolker, Westfall, Aust, & Ben-Shachar, 2020), and estimated marginal means with emmeans 

(Lenth, 2020).  

Categorization and Location Memory Performance 

Categorization Accuracy. To analyze how well participants performed in the 

categorization task (correct response = 1, wrong response = 0), we excluded ambiguous items 

that were equally similar to an invited and a rejected exemplar. We included fixed effects for 

the five conditions (Ex. Visual, Auditory, Visual, 3-s Visual, 1.5-s Visual), for the similarity 

between test candidates and exemplars (three and four matches), and for their interaction. 
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Categorization accuracy varied between conditions, c2(4) = 13.17, p = .01, and between levels 

of similarity, c2(1) = 9.96, p = .002. Factors did not interact: c2(4) = 2.31, p = .68. Post hoc 

analyses comparing the Ex. Visual condition against all other incidental learning conditions 

revealed that participants were more accurate in the categorization task when they worked 

through the exemplar learning phase, z = 2.55, p = .011, in line with the idea that more 

memory training leads to higher activations of similar exemplars in memory. Furthermore, 

participants were better when information stayed visible on the screen, as in the Visual 

condition, compared to when information was removed, as in the Auditory, 3-s Visual, and 

1.5-s Visual conditions (comparison of the Visual condition against the group of the Auditory, 

3-s Visual, and 1.5-s Visual conditions: z = 1.99, p = .046; see Table 1). Removing 

information from the screen can lead to participants forgetting attribute information, which 

increases error rates. 

 
Table 1 

Means (and Standard Deviations) of Performance and Looking-at-Nothing (LAN) Behavior 

for Experiment 1A and B in Test Trials and the Location Memory Test 

Variable Experiment 1A condition Experiment 1B condition 
Ex. Visual 
(N = 25) 

Auditory 
(N = 26) 

Visual 
(N = 25) 

3-s Visual 
(N = 25) 

1.5-s Visual  
(N = 24) 

Test trials      
  Categorization accuracy 94 (9) 82 (11)  88 (10) 84 (12) 84 (12) 
  Categorization response 
time 

5.68 (1.72) 7.19 (1.01) 5.11 (1.26) 4.51 (1.48) 4.38 (1.12) 

  LAN occurrence 0.09 (0.09) 0.71 (0.32) 0.05 (0.09) 0.22 (0.23) 0.37 (0.29) 
  LAN occurrence (N) 21 25 17 21 21 
  LAN strength 0.34 (0.32) 0.39 (0.14) 0.38 (0.38) 0.26 (0.15) 0.31 (0.14) 
Location memory test 
accuracy 

99 (3) 71 (22) 70 (27) 66 (29) 78 (21) 

Note. Mean percentage correct responses were calculated leaving out ambiguous items. Mean 
response times and LAN measures are based on all items. LAN occurrence describes mean 
proportion of LAN trials. The number of participants showing LAN (LAN occurrence N) 
indicates the number of participants who looked at least once in one experimental trial at one 
of the exemplar locations. LAN strength describes the participants’ mean proportion of 
fixations on the relevant exemplar for trials in which LAN occurred and random selection of 
one area of interest for ambiguous items; chance level is .25. Location accuracy describes 
mean percentage correct during the location memory test on the exemplar level. The Auditory 
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and 1.5-s Visual conditions had the strongest observed LAN behavior. Ex. Visual = Visual 
with exemplar learning. 
 

Categorization Response Times. Categorization response times were measured from 

the onset of the screen containing attribute information in the visual conditions and the onset 

of the auditory attribute presentation in the Auditory condition until participants gave their 

response. For the comparison of categorization response times, we analyzed data of all item 

types (invited, rejected, ambiguous). We used the same effects structure as for the analyses of 

categorization accuracy. We found a main effect of condition, F(4, 134.3) = 17.00, p < .001, 

with the longest response times in the Auditory condition in which information on attribute 

values was presented sequentially (see Table 1). This was confirmed by significant pairwise 

contrasts between the Auditory and all other (visual) conditions (all ps < .001). Additionally, 

response times were longer in conditions in which information stayed visible on the screen 

(Ex. Visual and Visual) in comparison to conditions in which the visible information was 

removed (3-s Visual and 1.5-s Visual), z = 2.28, p = .02. Response times were further 

determined by the similarity between test candidates and exemplars. We found a main effect 

of similarity, F(2, 44.99) = 74.36, p < .001, with the slowest response times for ambiguous 

items (i.e., two matches; Msim2 = 5,861 ms, SD = 2,029), followed by items with three 

matches (Msim3 = 5,029 ms, SD = 1,563), and the fastest responses for items resembling the 

exemplars (Msim4 = 4,411 ms, SD = 1,742, all ps < .001). The factors condition and similarity 

interacted, F(8, 5794.27) = 5.90, p < .001. That is, the observed differences in response times 

between conditions were most pronounced for test candidates that were identical to the 

training exemplars. 

Location Memory Test. We compared the number of correct retrievals in the location 

memory test at the end of the experiment on the level of exemplars. That is, if a participant 

clicked on any one of the four rectangles belonging to one exemplar that was associated with 

the attribute value tested in that trial, the response was counted as correct. As there was only 
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one observation per participant, we compared the number of correct retrievals on the 

exemplar level between conditions with an analysis of variance (ANOVA). Participants 

significantly differed in location memory performance between conditions, F(4, 120) = 8.53, 

MSE = 12.84, p < .001 (see Table 1). Participants best remembered the locations of the 

attribute values in the Ex. Visual condition that included the exemplar learning phase, in 

comparison to all other conditions (all ps < .02). No other contrasts reached significance (all 

ps > .32).  

Covariate Analysis for Accuracy. Adding response time and location memory test 

performance as predictors to the analyses of categorization accuracy4 revealed significant 

main effects for the four predicting variables: condition, c2(4) = 14.69, p = .005; similarity, 

c2(1) = 9.76, p = .002; categorization response time, c2(1) = 26.65, p < .001; and location 

memory test performance, c2(1) = 49.61, p < .001,5 and a significant interaction of condition 

and response time, c2(4) = 14.69, p = .005. That is, in addition to the effects of condition and 

similarity, participants performed better in the categorization task when they had better 

location memories about exemplars (linear contrast: z = 7.58, p < .001) and when they gave 

their responses more quickly (linear contrast: z = -5.08, p < .001).  

After observing these differences between the conditions in categorization behavior 

and location memory performance, we subsequently controlled for categorization accuracy, 

response times, and location memory performance by adding them as covariates to all 

following analyses. This improved model fits of models on LAN occurrence and strength, but 

not LAN and categorization decisions. Still, running models without covariates shows the 

same pattern of results. 

                                                
4 In comparison to the analysis of categorization accuracy, here we added the two continuous covariates: 
response time and location memory test performance. We used the logarithm of response times to meet the 
criteria of normal distribution of predictor variables. In addition, response times and location memory test 
performance were centered to zero. 
5 Please note that given that the location memory task occurred after the categorization task, performance in the 
location memory task may have been influenced by the performance in the categorization task and thus it is not 
possible to make claims regarding the directionality of the effect.  
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LAN Occurrence 

To test if LAN varies with different presentation modalities, we assessed if a 

participant looked at least once at one of the four exemplar locations for each trial (coded as 1 

if yes, 0 if no). Then, we calculated the proportion of trials in which LAN occurred per 

person. Figure 4 shows clear differences between the experimental conditions.  

 

 

Figure 4. Proportion of trials per participant in which looking-at-nothing (LAN) occurred in 

each of the five presentation conditions. Each point shows the data of one participant.  

 

Corresponding to the previous GLMM analyses, condition and similarity were added 

as main effects as well as their interaction. As covariates, we included response time and 

location memory performance as well as the interaction of response time with condition. We 

found a significant difference in LAN occurrence between the conditions, c2(4) = 81.50, p < 

.001. The most LAN occurred in the condition where information was presented auditorily, 

followed by the condition in which visually presented information was removed after 1.5 s 

(pairwise comparison of the Auditory and 1.5-s Visual conditions, z = 2.69, p = .06). These 

two conditions—Auditory and 1.5-s Visual—differed significantly from all other conditions 
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(all ps < .05). There was no difference in LAN occurrence between the conditions in which 

participants received exemplar training and those in which information was presented only 10 

times (pairwise comparison between Ex. Visual and Visual, z = 0.41, p = .99). LAN 

occurrence steadily increased from keeping information visible on screen, to removing 

information after 3 s (pairwise comparison between Visual and 3-s Visual, z = -3.24, p = .01), 

to removing information after 1.5 s (pairwise comparison of 3-s Visual and 1.5-s Visual, z = -

2.76, p = .05). 

Participants were slightly more likely to look at the exemplar locations when a test 

item had identical attribute values to one of the training exemplars, revealing a main effect of 

similarity, c2(2) = 6.21, p = .04. However, none of the pairwise comparisons between the 

levels of the factor similarity reached significance (all ps > .09). There was no interaction of 

similarity with condition, c2(2) = 15.71, p = .05. 

Participants were more likely to show LAN when response times were increased, c2(1) 

= 373.21, p < .001 (linear contrast: z = 17.89, p < .001), interaction of response time and 

condition, c2(4) = 80.64, p < .001. That is, the more time a participant took, the higher their 

chance of hitting one of the exemplar AOIs with their eyes. There was, however, no effect of 

location memory performance on LAN occurrence, c2(1) = 0.15, p = .70. Adding 

categorization accuracy6 instead of location memory performance to the model revealed the 

same results pattern.7  

LAN Strength  

For trials in which participants showed LAN, we tested if LAN reflects the similarity 

between test candidates and exemplars. Therefore, we analyzed LAN strength, defined as 

fixation proportions based on the number of fixations on the matching exemplar (henceforth 

called “relevant exemplar”) divided by the summed number of fixations on all four exemplar 

                                                
6 Categorization accuracy for ambiguous items was set to 0.5. 
7 Adding exemplar learning duration to the model of LAN occurrence did not change our main results. 
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locations. If two exemplars were similarly relevant in a given trial (ambiguous items had a 

similarity of 2), we randomly selected the fixation proportion for one of the two possible 

exemplars. Figure 5 shows mean proportions of fixation on the relevant exemplar by 

similarity and condition. Overall, participants looked more at the exemplar locations that 

shared more attribute values. However, due to a reduced number of participants and trials in 

which LAN occurred, this pattern is blurred in the Ex. Visual, Visual, and 3-s Visual 

conditions. Therefore, all following statistical analyses were performed only for the Auditory 

and 1.5-s Visual conditions.  

 

 

Figure 5. Mean proportions of fixation on the relevant exemplars for test items that shared 

two, three, or four attribute values with the relevant exemplar for the presentation conditions 

of Experiment 1. Standard errors show within-subject 95% confidence intervals (Morey, 

2008). Gray jittered dots in the background show the individual participants’ means. 

 

To test LAN strength, we used the same fixed effects structure as for the analysis of 

LAN occurrence. We found a main effect of similarity, c2(2) = 16.58, p < .001. There was 

neither an effect of condition, c2(1) = 0.85, p = .36, nor an interaction of condition and 
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similarity, c2(2) = 0.23, p = .89. That is, in both conditions, LAN strength reflected the 

activation of exemplars from memory.  

Concerning the covariates, there was no effect of location memory performance, 

c2(1) = 0.03, p = .86. Longer response times lead to significantly reduced LAN strength, 

c2(1) = 10.52, p = .001 (linear contrast: z = -3.24, p = .001), but there was no interaction 

between condition and response time, c2(1) = 1.82, p = .18. Thus, whereas longer response 

times increased the chance of hitting one of the exemplar locations with the eyes (see results 

on LAN occurrence), they reduced the chance of looking proportionally more at the most 

similar exemplar. One reason for this could be that in trials with longer response times, 

activations for the most similar exemplars differ less from the activations of the other 

exemplars (due to the probabilistic nature of the process). This should reduce LAN strength 

but also categorization accuracy. Indeed, categorizations were more accurate with shorter 

response times (see covariate analysis for accuracy). In the same vein, adding categorization 

accuracy instead of location memory performance to the model revealed that participants 

showed higher LAN strength the higher their categorization accuracy, c2(1) = 29.48, p < .001, 

while the results pattern of all other factors in the model was the same.  

In the previous analysis, we could not study how LAN strength was affected by the 

difference between the memory training conditions (i.e., exemplar vs. criterion learning), 

because in the exemplar learning condition, too few participants showed LAN. To test for 

possible differences, we conducted a reanalysis of data from Scholz et al. (2015) comparing 

LAN strength in the Auditory condition of this study that had only a criterion learning phase 

with two test phases of Scholz et al. (2015) that included an exemplar learning phase in 

addition to criterion learning and also had an auditory presentation format. Test materials and 

the learning procedure were the same as in this study. Participants first learned attribute 
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values of three attributes about four (Experiment 1, NExp.1 = 268) or eight (Experiment 2, 

NExp.2 = 28) exemplars, where the attribute direction (i.e., the sign of an attribute–criterion 

relation, Bröder et al., 2010; von Helversen, Karlsson, Mata, & Wilke, 2013; von Helversen & 

Rieskamp, 2009) was unknown, presented at four spatial locations on a screen. During test 

trials they were auditorily presented with each training candidate once. Figure 6 shows 

proportions of fixation on the relevant exemplar under the instruction to use exemplars to 

make the decision. Visual inspection of mean values and confidence intervals in Figure 6 

indicates that there is no difference between the conditions.  

 

 

Figure 6. Mean proportions of fixation on relevant exemplars for training candidates in the 

test sets of two experiments reported in Scholz et al. (2015) and the Auditory condition of 

Experiment 1. Standard errors show between-subject 95% confidence intervals. Gray jittered 

dots in the background show the individual participants’ mean. 

 

                                                
8 Note that due to some participants not showing LAN in some trials of Experiment 1 in Scholz et al. (2015), the 
number of participants is reduced to 22 for the presented analysis. 
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LAN and Categorization Decisions 

Previous research has shown that LAN can bias judgments in the direction of the 

exemplar that was looked at most (Rosner & von Helversen, 2019). To test if such gaze biases 

also occurred for categorization decisions in this study, for trials in which LAN occurred, we 

ran a GLMM for categorization decisions (1 = invite, 0 = reject) with condition (all five 

presentation conditions) and proportions of fixation on the invited candidates as fixed effects 

as well as covariates’ response times and location memory performance. Proportions of 

fixation on invited candidates indeed significantly predicted participants’ decisions, 

c2(1) = 28.92, p < .001. The more participants looked at invited exemplars, the larger the 

chance they would invite the test candidate. We could not find a significant difference 

between the conditions, c2(4) = 5.06, p = .28. None of the covariates significantly predicted 

categorization decisions. Adding categorization accuracy instead of location memory 

performance revealed the same result pattern. 

Discussion 

Experiment 1 tested if a memory training on exemplar information leads to a higher 

LAN strength by increasing memory-driven activations on the shared priority map. 

Furthermore, we tested if LAN occurrence is reduced through an increase in activations on the 

shared priority map due to a visual presentation of verbal information about test candidates.  

We found that the presentation modality strongly influenced the occurrence of LAN. 

LAN occurrence was strongest in the condition in which test items were presented auditorily, 

in line with previous findings on LAN in JDM (Rosner & von Helversen, 2019; Scholz et al., 

2015). When verbal information about test candidates stayed visible on the screen until 

participants gave their response, no LAN was observed. Removing visual information from 

the screen led to increases in LAN. The shorter the presentation duration of the visual 

information on the screen, the more LAN was observed. We discuss these results in more 

detail in the General Discussion. 
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In conditions in which we had sufficient data to measure LAN strength, gaze behavior 

reflected the similarity between test items and exemplars. However, the results on whether 

memory strength increases LAN strength were inconclusive. Because in the condition with 

exemplar memory training not much LAN occurred, we compared the data from the Auditory 

condition with a previous data set that included exemplar memory training (Scholz et al., 

2015). The analyses did not show any differences in LAN strength with and without exemplar 

memory training. We also did not find an effect of location memory on LAN strength. 

However, more correct classifications were related to more looks at the associated spatial 

locations, which could indicate an effect of better memories on LAN strength. One reason 

why we did not find much of an effect of memory training could be that memory 

representation may have been sufficiently strong to elicit LAN even without exemplar 

training. However, the results of the reanalysis need to be interpreted with caution given that 

they rely on a comparison of two different experiments and thus participants were not 

randomly assigned to conditions. This leaves open the question of whether the strength of 

memory-driven activations influences LAN. To investigate this question further and to 

understand better how LAN is related to memory processes when stimuli are presented 

visually, we conducted a second experiment. We used a visual color categorization task with 

two inseparable attribute dimensions, in which the use of exemplar memory has often been 

demonstrated (Nosofsky, 1988; Nosofsky & Palmeri, 1997; Nosofsky & Stanton, 2005). 

Moreover, categorization with these stimulus materials is likely to be more difficult, which 

allowed us to investigate the impact of memory accuracy when memory representations are 

less accurate. In addition, we employed an explicit imagery instruction and instructed 

participants to deliberately use the exemplar information for their decisions, to increase 

memory-driven activations. Imagining the most similar exemplar may increase memory 

activations, which should become visible in higher LAN strength.  
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Experiment 2 

Participants’ task was to classify color stimuli into one of two categories. The stimuli 

all had the same hue but varied in their brightness and saturation (e.g., Nosofsky & Palmeri, 

1997). In a criterion learning phase, participants learned which of six colors (training 

exemplars) belonged to which category via outcome feedback. During the test phase, they 

repeatedly classified the exemplar items and new items (the factor item type varied within 

participants). Half the participants received the instruction to use the knowledge gained during 

criterion learning (intuitive condition). Half were instructed to imagine the exemplars with 

their inner eye and to choose the category with exemplars of the highest similarity (explicit 

condition). Thus, task instructions varied between participants. They were tested on their 

memories about the exemplar locations before the test phase and at the end of the experiment. 

Additionally, at the end of the experiment, we tested their color memories in an old–new 

discrimination test. The experiment lasted on average 24.87 min (SD = 3.28). The study 

design and methods were approved by the ethics committee of the University of Zurich. All 

materials and data are available at https://osf.io/zpc2s/.  

Participants 

To find a medium effect (e.g., hp2≈ .07) of the instruction condition on LAN 

occurrence, a total sample of 60 participants was needed to reach a power of 80% (repeated 

measures ANOVA, between factors, 2 groups, number of measurements = 10 – corresponding 

to 10 test items, see Faul et al., 2007). Overall, 61 (15 male, Mage = 30.5 years, range 18–68 

years) participants at the University of Zurich took part in the study. Participants received 

course credit or financial compensation (8 CHF). All participants had normal or corrected-to-

normal vision. Mean track accuracy in the test trials was very high at M = 0.8° of visual 

angle. All participants signed informed consent forms. 

Apparatus 

The same eye tracker and setup was used as in Experiment 1. 
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Materials 

The stimuli consisted of a set of 16 colors. Ten of them were identical to colors used 

by Nosofsky and Stanton (2005). Stimuli consisted of a constant red hue of the Munsell color 

scheme (7.5R). They varied in their brightness and saturation. Items were chosen based on a 

simulation with the generalized context model (GCM; Nosofsky, 2011, see Appendix B for 

details). Six colors formed the training set, with three belonging to Category A and three to 

Category B. To correctly classify the training items, both attribute values—saturation and 

brightness—had to be considered. The test set consisted of the six training exemplars and four 

ambiguous items that lay exactly in the middle of the two categories. Additionally, six colors 

were generated for the old–new discrimination test at the end of the experiment. Figure 7 

shows a schematic illustration of the Munsell color configuration used in Experiment 2. 

Appendix C provides the red, green, and blue (RGB) values corresponding to each color. 

 

 

Figure 7. Schematic illustration of the Munsell color configuration used in Experiment 2. 

Squares represent training exemplars of one category and triangles exemplars of the other. 

Circles represent ambiguous items that lay on the category border (dashed gray line). Thick 
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frames mark items used in the test phase and the old–new discrimination test. Thin-framed 

items were used solely in the old–new discrimination test. 

 

Exemplars were arranged in a circle with a size of 3.77° of visual angle (140 pixels) at 

a distance of 11.28° of visual angle (420 pixels) from the center of the screen (see Figure 8). 

Test items were of the same size as exemplars and presented in the center of the screen.  

 

 

Figure 8. Experimental procedure. All participants worked through the criterion training 

phase, the test phase, and the location and old–new discrimination memory tests. Conditions 

differed in the instructions that participants received before and during the test phase. Black 

circles contained the exemplar or test item. The circles with text under old–new 

discrimination read known (top) and unknown (bottom). 
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Procedure 

At the beginning of the experiment, the eye tracker was calibrated to check if eye 

movements could be recorded to a sufficient quality (< 1.5° of visual angle). 

Criterion Learning 

During criterion learning, participants were instructed to classify each of the six 

training exemplars into one of two categories (A or B). Therefore, they first saw one of the 

exemplars in one of the six circles (Figure 8). They were instructed to press, at their own 

pace, the left mouse button if they thought the exemplar belonged to Category A and the right 

mouse button for Category B. Auditory feedback on the correctness of decisions was given 

over headphones and the correct category label was repeated. After the feedback, the training 

exemplar disappeared and a new training exemplar was shown in a different spatial location. 

One block consisted of the random presentation of all six exemplars. Criterion learning lasted 

for 10 blocks. For each participant, the training exemplars always appeared in the same spatial 

positions. We controlled for exemplar location in 12 orders with the constraint that at most 

two exemplars of the same category were presented next to each other. Furthermore, category 

labels for exemplars were reversed for half the participants. For instance, for half the 

participants exemplar 4 (see Figure 7) belonged to Category A, and to Category B for the 

other half. Criterion learning lasted on average 8.98 min (SD = 0.96). 

Location Memory Pretest 

Next, we assessed participants’ memories of the trained exemplar locations. For this, 

one exemplar was presented in the center of the screen and the participants’ task was to click 

on the spatial location that had contained the exemplar during criterion learning. Each 

exemplar location was tested once. Participants received no feedback on the correctness of 

their decisions. The location memory pretest lasted on average 0.96 min (SD = 0.15). 
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Test Phase 

Each trial of the test phase began by participants being asked if they were ready to 

start the next trial. After participants pressed the left mouse key, a fixation cross appeared in 

the center of the screen for 1.5 s, followed by the test item that was visible for 200 ms. After 

that, the screen contained only the frames of the six training exemplars (Figure 8). 

Participants indicated their decisions by clicking on either the right or the left mouse button. 

One block in the test phase consisted of the presentation of all six training exemplars and the 

four ambiguous color items in randomized order. The test phase consisted of 10 blocks (i.e., 

100 test trials in total).  

The critical manipulation of Experiment 2 was introduced prior to the beginning of the 

test phase. Participants in the intuitive condition were instructed: “In order to make your 

decisions on the category membership of the test items, please use your previous knowledge 

about the trained colors.” Participants in the explicit condition were instructed: “After seeing 

the color of the test item, imagine which training exemplar was the most similar. Try to 

remember the previously introduced colors and then compare and decide for the category of 

the most similar color.” This instruction was repeated after one third and two thirds of the test 

phase for participants in the explicit condition. Participants in the intuitive condition were 

informed only about the progress of the test phase. Eye movements were recorded throughout 

the test phase. The eye tracker was recalibrated during two breaks, one after one third and one 

after two thirds of the trials. The test phase lasted on average 8.63 min (SD = 1.01).  

Old–New Discrimination Test 

The procedure was similar to that of the location memory pretest. However, this time, 

participants saw the six exemplar items intermixed with six completely new items in 

randomized order. Their task was to indicate if they had previously seen the tested color. 

Therefore, they clicked on either the “known” or the “unknown” button located at a distance 

of 5.38° of visual angle (200 pixels) above and below the center of the screen (Figure 8). Each 
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item occurred only once. The old–new discrimination test lasted on average 1.32 min (SD = 

0.21). 

Location Memory Posttest 

The procedure was the same as for the location memory pretest. The test lasted on 

average 0.46 min (SD = 0.06). 

Results 

The aim of Experiment 2 was to test if an explicit imagery instruction leads to higher 

LAN strength than a more intuitive exemplar instruction. Furthermore, we aimed to replicate 

the result of Experiment 1 in a visual categorization task, where exemplar-based 

categorization behavior has often been observed. Like in Experiment 1, we first analyzed 

participants’ performance in the categorization task. 

Preparatory Data Analyses and Rationale for the Analyses  

Mean response time in the test phase was 1.5 s (SD = 1.8). The response times of one 

participant exceeded the mean response times of all participants by more than 5 times the 

standard deviation of the response-time distribution. Therefore, this participant was excluded 

from further analyses. In addition, 25 trials (0.42% of trials) were excluded because response 

times were larger than 10 s (again, more than 5 times larger than the standard deviation). In 

109 trials (1.82% of trials), no gaze data were recorded, and these trials could therefore not be 

analyzed. Using the same exclusion criteria as in Experiment 1 (exemplar classification 

accuracy at chance level or worse) would have led to the exclusion of 14 participants from the 

analyses of Experiment 2. However, given that the second experiment was overall more 

difficult (see results on categorization accuracy and memory test performance), such a strict 

performance criterion did not seem appropriate and thus we included these participants in the 

analyses. However, removing them leads to the same overall results pattern.  

We analyzed gaze data of looks toward the exemplar locations for a circular area 3 

times the size of the exemplar location (11.30° of visual angle, 420 pixel). The mixed-model 
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analyses followed the same rationale as in Experiment 1. The analyses of LAN occurrence 

and LAN in relation to categorization behavior contained by-subject random intercepts. All 

other analyses included by-subject random intercepts and by-subject random slopes for 

exemplars. Further details and results of the analyses can be found in the online supplemental 

materials provided on OSF (https://osf.io/zpc2s/). 

Categorization and Location Memory Performance 

Participants in the two instruction conditions did not differ in task performance (see 

Table 2). To test for differences, we ran separate mixed models for each dependent measure 

including a fixed effect for instruction. Instruction conditions showed no meaningful 

differences in categorization accuracy, c2(1) = 0.48, p = .49, categorization response time, 

F(1, 58.03) = 0.37, p = .55, location memory performance, F(1, 58.01) = 0, p = .96, or 

discrimination accuracy, F(1, 57.98) = 2.88, p = .10. Note, for the analyses of location 

memory performance, we summarized location memory pre- and posttest performance into 

one location memory score. The score indicates the number of correct localizations (2 = an 

exemplar was correctly localized in the pre- and posttest, 1 = correctly localized in either test, 

0 = never localized correctly). Thus, the higher the score, the better participants remembered 

the exemplar locations (MInt = 0.7, SDInt = 0.48, MExp = 0.7, SDExp = 0.31, where int = intuitive 

and exp = explicit).  
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Table 2 

Means (and Standard Deviations) of Performance and Looking-at-Nothing (LAN) Behavior in 

Experiment 2 in Test Trials and Memory Tests 

Variable Condition 
Intuitive 
(N = 30) 

Explicit 
(N = 30) 

Test trials 
  

  Categorization accuracy 65 (19) 67 (17) 
  Categorization response time (s) 1.30 (0.59) 1.50 (0.82) 

  LAN occurrence 0.22 (0.31) 0.23 (0.28) 
  LAN occurrence (N) 28 30 
  LAN strength 0.21 (0.17) 0.27 (0.25) 

Memory tests   

  Location accuracy pretest 38 (25) 33 (32) 
  Location accuracy posttest 33 (19) 38 (20) 
  Discrimination accuracy 69 (13) 67 (18) 

Note. Mean percentage correct responses was calculated for exemplar items leaving out 
ambiguous items. Mean response times and LAN measures are based on all items. LAN 
occurrence describes mean proportion of LAN trials. The number of participants showing 
LAN (LAN occurrence N) indicates the number of participants who looked at least once in 
one experimental trial at one of the exemplar locations. LAN strength describes the 
participants’ mean proportions of fixation on the relevant exemplar for trials in which LAN 
occurred and random selection of one area of interest for ambiguous items; chance level is 
.17. Location and discrimination accuracy describe mean percentage correct in the memory 
tests. 

 

Covariate Analyses for Accuracy 

In addition to the type of instruction, we added response time, location memory 

performance, discrimination accuracy, and block9 as covariates to the analyses of 

categorization accuracy. Like in the analysis of categorization accuracy without covariates, 

there was no effect of instruction, c2(1) = 0.55, p = .46. Concerning covariates, this analysis 

revealed significant influences of response time, c2(1) = 16.15, p < .001, and location 

memory, c2(1) = 27.25, p < .001. That is, in line with the results in Experiment 1, the longer 

participants took to decide, the worse their decisions (linear contrast: z = -4.03, p < .001), and 

                                                
9 As test items were repeated in blocks of trials, we controlled for this by adding block as a covariate. 
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the better their location memory, the better their decisions (linear contrast: z = 5.22, p < 

.001). We added categorization accuracy, response times, location memory performance, 

discrimination accuracy, and block as covariates to the subsequent analyses of LAN, which 

improves model fits for analyses of LAN occurrence and strength, but not LAN and 

categorization decisions. However, our main results stay the same when running models 

without covariates.  

LAN Occurrence 

LAN occurrence was calculated in the same way as in Experiment 1, that is, as the 

proportion of trials in which participants looked at least once at one of the exemplar locations. 

As the presentation modality was the same in both instruction conditions, LAN occurrence 

should be comparably strong between the conditions. Indeed, LAN occurrence in Experiment 

2 was comparably high to that in Experiment 1B in which visually presented verbal 

information was also removed from the screen (see Tables 1 and 2). A mixed-model analysis 

revealed no difference between the instruction conditions, c2(1) = 0.11, p = .74 (Figure 9). 

 

Figure 9. Proportion of trials per participant in which looking-at-nothing (LAN) occurred in 

the two instruction conditions of Experiment 2. Each point shows the data of one participant.  
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LAN Strength 

The mixed model analysis of LAN strength, including fixed effects for instruction 

condition and item type, as well as the covariates categorization accuracy, response time, and 

block, found a main effect of instruction. Participants fixated proportionally more on the most 

similar exemplar location when they received an explicit instruction in comparison to an 

intuitive instruction, c2(1) = 15.52, p < .001 (see Figure 10). There was a main effect of item 

type, with the effect being more pronounced for ambiguous items than for exemplar items, 

c2(2) = 10.27, p < .001. The interaction of instruction and item type did not reach 

significance, c2(1) = 3.25, p = .07. However, the main effect of item type appears not to be 

very stable. When we added the interaction of response time and item type to the model, the 

main effect of item type was no longer significant, c2(1) = 3.09, p = .08. LAN strength was 

more pronounced for correct classifications, main effect of categorization accuracy: 

c2(2) = 133.67, p < .001, and when decisions were made more quickly, main effect of 

categorization response time: c2(1) = 6.72, p = .01 (linear contrast response time: z = -2.60, p 

= .009).  

 

Figure 10. Estimated mean proportions of fixation on the relevant exemplar for exemplar and 

ambiguous items in the two instruction conditions of Experiment 2. Standard errors show 
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estimated within-subject 95% confidence intervals. Gray jittered dots in the background show 

the individual participants’ means. 

 

Analyzing only the exemplar items allowed us to assess the influence of location 

memory performance and discrimination accuracy. A mixed-model analysis excluding the 

factor item type and including location memory performance as well as discrimination 

accuracy revealed a significant influence of location memory performance, c2(1) = 45.97, p < 

.001, but no effect of discrimination accuracy, c2(1) = 0.55, p = .46. That is, the better 

participants remembered the exemplar locations, the higher the LAN strength was (linear 

contrast location memory: z = 6.77, p < .001). All other results stayed the same. 

LAN and Categorization Decisions 

Like in Experiment 1, we tested if participants were more likely to choose the category 

they looked at most. We ran a mixed model for categorization decisions (A = 1, B = 0) with 

instruction, item type, and their interaction, as well as proportion of fixation on Category A as 

fixed effects. As covariates, we added categorization accuracy, response time, and block. We 

found a main effect of fixation proportion. The more participants looked at Category A, the 

more likely they were to respond with A, c2(1) = 268.55, p < .001, replicating the results of 

Experiment 1. 

Discussion 

The goal of the second experiment was to test if an explicit instruction to imagine 

relevant information from memory would lead to higher LAN strength than when 

participants’ instruction for how to retrieve exemplar information was more implicit (intuitive 

condition). As expected, people showed more LAN to locations associated with stored 

information when they received an explicit imagery instruction.  

As in Experiment 1, long response times increased the chance of a participant hitting 

one of the exemplar locations by looking around the screen, but they decreased the proportion 
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of fixations on the most similar exemplar locations. With long response times, it is possible 

that several exemplars are being retrieved from memory in order to come up with a 

classification decision (Nosofsky & Palmeri, 1997). On the one hand, this can increase the 

chances of looking at at least one of the exemplar locations, increasing LAN occurrences. On 

the other hand, if different exemplars are activated in memory, this reduces the chances of 

looking at the most similar exemplar location, which leads to reduced LAN strength. In line 

with this, as in the first study, longer response times went along with worse classification 

decisions. The more correctly participants decided, and the better their memories for the 

exemplar locations, the higher the chances of looking at the most similar exemplar locations. 

In sum, depending on the assumed retrieval process and the way LAN was measured, LAN 

behavior can be either increased or decreased with long response times. 

General Discussion 

Whereas there is strong agreement among researchers that memory plays a major role 

in the decision-making process (e.g., Weber et al., 1995), the exact nature of the influence is 

not well understood. A promising path for investigating memory processes in JDM is to study 

eye movements (e.g., Orquin & Mueller-Loose, 2013) in general, and the LAN behavior more 

specifically (e.g., Renkewitz & Jahn, 2012). This study focused on the interaction of memory-

driven and stimulus-driven influences on LAN in two typical JDM paradigms, where people 

often use a memory-based decision strategy (i.e., the retrieval of past instances stored as 

exemplars in memory; e.g., Nosofsky, 2011). Our assumptions on eye-movement behavior 

were derived from the idea of a shared priority map (e.g., Hedge et al., 2015), wherein 

activations resulting both from memory retrieval and from processing information from the 

visual environment influence eye movements, as they both create activations in one spatially 

organized representation in memory. The location in the representation that receives the 

highest neural activation determines the location of the next fixation in the visual world 

(Figure 1).  
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Concerning memory-driven influences on LAN, we observed that LAN reflected the 

similarity between test items and exemplars stored in memory. Furthermore, the more people 

looked at the exemplar locations of one category, the more likely they were to categorize an 

item in the same category, suggesting that they indeed used similarity-based exemplar 

memory to make their decisions. In regard to increasing memory-driven activations by 

strengthening memory traces, our results were less clear. In Experiment 1, we found no 

evidence that first learning exemplar information by heart led to observable difference in 

LAN strength in comparison to 10 rounds of criterion learning. However, in both 

experiments, we found evidence that categorization accuracy was related to more LAN 

strength. Furthermore, an explicit instruction to imagine the most similar exemplar from 

memory increased LAN strength.  

Concerning the influence of presentation modality, we found that presenting test items 

visually in comparison to auditorily increased eye movements to visual information presented 

on the screen and reduced LAN. However, when visually presented information was removed 

after people perceived it, LAN occurred and reflected memory-driven activation. In the 

following we discuss the different influences investigated in more detail and then consider the 

implications of our results for using LAN to understand memory processes in decision 

making. 

Effects of Memory Training on LAN Behavior 

In Experiment 1 we did not find differences in LAN strength when participants had 

only a criterion learning phase or an additional exemplar learning phase in which they learned 

the attributes of each exemplar by heart. However, the more correct participants’ 

classifications were, the more they looked at the associated screen locations. Furthermore, the 

results of Experiment 2 with a more difficult categorization task (due to less distinct 

attributes) showed that the better each individual remembered the locations at which 

exemplars were presented, the more likely they were to look at the associated screen 
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locations. First, these results suggest that exhaustive training is not needed to observe LAN 

during JDM. This is in line with previous LAN studies that used encoding-retrieval paradigms 

without extensive learning phases (Johansson et al., 2012; Krefeld-Schwalb & Rosner, 2020; 

Kumcu & Thompson, 2020; Scholz et al., 2016). Second, the results suggest that if variance is 

large enough, the quality of the memory representation can matter. Thus, overall, the results 

are in line with the idea that the more strongly information and its location information is 

activated in memory, the more likely it becomes that the exemplar will be retrieved (e.g., 

Dougherty et al., 1999) and the higher the quality of LAN. This is in line with the 

assumptions in the shared priority framework that activated knowledge increases attention in 

memory, which in turn increases the likelihood of looking at spatial locations associated with 

retrieved information (Hedge & Leonards, 2013; Hedge et al., 2015; Theeuwes et al., 2009). 

But note, materials in this study consisted of rather difficult exemplars. If exemplars would be 

over-learned or easy, this may result in less LAN, possibly due to rather automatic, short 

responses (Jones et al., 2018; Scholz et al., 2011; Wantz et al., 2016). Future research is 

needed to describe under what conditions LAN may be strongest and thereby most 

informative about exemplar retrieval from memory. 

Effects of Task Instruction on LAN Behavior 

In Experiment 2, the explicit instruction to imagine the most similar exemplar affected 

the quality of the LAN behavior. People showed more LAN to locations associated with the 

retrieved information in the explicit imagery condition. This is in line with research 

demonstrating that eye movements can be guided by manipulating the viewing strategy (e.g., 

Brandstatt & Voss, 2014; Chan, Kamino, Binns, & Ryan, 2011; Foulsham & Kingstone, 

2013) or as in this study by task instructions (Shih et al., 2012). The results of this study can 

be explained with the shared priority map framework by the imagery instruction increasing 

the activation of the most similar exemplar held in memory (Dougherty et al., 1999), because 

imagining exemplars made them more vivid (Kosslyn, 1994), which led to a higher 
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accessibility of exemplar information and increased chances of reactivating location 

information stored along with the exemplars in memory. 

One potential alternative explanation is that we found the differences between the 

instruction conditions because in the intuitive condition in Experiment 2, participants did not 

rely on an exemplar-based process. Yet, often exemplar-based processes are assumed to be 

automatic and other research has found exemplar-based processing with highly similar 

stimulus materials (Nosofsky & Palmeri, 1997; Nosofsky & Stanton, 2005). Furthermore, also 

in the intuitive condition, eye movements were more likely to be directed at the most similar 

exemplar, suggesting that in both conditions, LAN reflected exemplar retrieval from memory.  

Effects of Presentation Format on LAN Behavior 

The presentation modality strongly influenced LAN behavior. LAN was most 

observable when test items were presented auditorily, as in previous research on LAN during 

exemplar-based JDM (Rosner & von Helversen, 2019; Scholz et al., 2015). When verbal 

information about test candidates was presented visibly and the information stayed visible on 

the screen until participants gave their response, almost no LAN behavior occurred, although 

behavioral measures indicated that the same decision-making process took place. We explain 

this finding in light of the framework of the shared priority map. Visually presented 

information about the job candidates that should be judged created an activation peak in the 

center region of the spatially organized representation held in memory, corresponding to the 

visuospatial location at which information was presented on the screen. This activation was 

stronger than the activations resulting from exemplar retrieval. Thus, although people likely 

retrieved exemplars from memory, eye movements were mainly guided by the activations 

resulting from the visually salient and relevant stimuli and the effect of exemplar similarity on 

LAN was no longer observed. A similar argument was used by Jones et al. (2018). They 

assumed that an activation threshold in memory has to be exceeded to show LAN behavior. If 

the activation of retrieval-relevant information is sufficiently strong (e.g., when information is 
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highly activated in memory; see Scholz et al., 2011) but location memory—that is, knowledge 

about where information was presented—is too weak, LAN will not be shown. 

In the Auditory condition of Experiment 1, almost no visual information was presented 

(as is typical for the blank screen paradigm; Altmann, 2004). Thus, eye movements reflected 

activations of exemplars from memory. In addition, we assume that this effect was further 

increased through the sequential presentation of auditory stimulus materials, reflecting an 

effect of processing spoken information on LAN (Altmann & Kamide, 2009; Huettig et al., 

2011). That is, in this case, LAN may reflect both auditory language processing and decision 

making. Language processing, however, might not explain the observed LAN behavior 

completely, as it does not occur when people draw less on memory retrieval to make their 

judgments or decisions, for instance, when using a rule-based strategy (see Scholz et al., 

2015).  

The effect of language processing on LAN may be reduced when verbal information 

about job candidates is presented visually, but is removed as soon as participants have read 

the information. In Experiment 1B, we show that removing visually presented verbal 

information indeed increased LAN occurrence compared to a condition in which the visual 

information remained visible. Indeed, the shorter the presentation duration of the visual 

information on the screen, the more LAN was observed. In Experiment 2, with a similar 

procedure, there were a reasonable number of trials in which LAN was observed. In light of 

the framework of the shared priority map, this finding can be explained as resulting from the 

removal of the strong activations in the center of the map. As soon as information is removed 

from the screen, eye movements seem to reflect memory activations resulting from exemplar 

retrieval. 

Top-Down and Bottom-Up Processing 

Throughout this study, we assumed that increased memory activations (due to 

similarity, task instructions, or training) lead to increases in the strength of LAN and that 



EYE MOVEMENT GUIDANCE DURING MULTI-ATTRIBUTE JDM  
 

52 

activations resulting from visual information presentation lead to decreases in the occurrence 

of LAN. An interesting question is to what extent these different sources of activation map to 

the widely used dichotomy of bottom-up and top-down processing that is prevalent in both the 

attention (Awh et al., 2012; Theeuwes, 2010) and decision-making (Orquin et al., 2013; 

Orquin & Mueller Loose, 2013) literature. Certainly, a one-to-one mapping of memory-driven 

activations stemming from top-down or goal-directed processes and stimulus-driven 

activations stemming from the visually presented pieces of information is not possible.  

Indeed, activations resulting from visual stimulus presentation are likely to stem from 

both types of processing. On the one hand, the visual presentation of items should increase 

activations in the shared priority map in a bottom-up manner through its physical salience. On 

the other hand, the verbal information presented on screen was task relevant and thus should 

also increase attention to it in a top-down manner in order to enable participants to accomplish 

the decision task.  

The questions of whether and to what extent memory-driven activations in a shared 

priority map are top down is complex. Under explicit task instructions, the use of similarity to 

the previously seen exemplars and the resulting memory-driven activations through the 

exemplars are likely goal directed, suggesting top-down processing. However, for instance in 

the implicit instruction condition, memory-driven activation may be automatic. Thus, while 

activations due to exemplar retrieval in this condition may reflect top-down processing it is 

also possible that they are a by-product of the goal to come up with a classification decision. 

In the latter case, the training phase could have biased participants’ attention to spatial 

locations that had contained the exemplars during the initial training phase. Such an effect of 

the selection history (Awh et al., 2012) could have caused automatic memory-related 

activations in the shared priority map, comparable to effects of intertrial priming observed in 

visual search tasks (Kristjansson & Campana, 2010).  
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More research is clearly necessary to clarify the nature of the assumed activations. 

But, LAN and LAN in JDM tasks may provide an interesting test bed to tease apart different 

sources of activations and how they guide attention and eye movements.  

LAN as a Process Measure in JDM 

Our secondary goal with this study was to investigate the extent to which LAN 

behavior is informative about retrieval processes in memory occurring during JDM, that is, 

the extent to which LAN can be used as a process measure in JDM (e.g., Schulte-

Mecklenbeck et al., 2017). In 22% to 37% of trials in which LAN was observed, the behavior 

systematically reflected the similarity of exemplars stored in memory to test items presented 

on the screen. This was also the case when participants were repeatedly presented with 

exemplar items while receiving outcome feedback on the criterion values, instead of 

memorizing the exemplar information. 

Furthermore, using LAN revealed an exemplar-gaze cascade effect. That is, when 

LAN occurred in this research, it predicted participants’ decisions: The more participants 

looked at exemplars of one category, the more likely they were to choose that category. This 

is in line with one of the most robust findings on eye movements in JDM, which can be 

observed when all decision-relevant information stays visible on screen: the gaze cascade 

effect (Glaholt & Reingold, 2009; Shimojo, Simion, Shimojo, & Scheier, 2003). 

This suggests that even when LAN occurrence is reduced with visual presentations, 

studying LAN is a promising way to better understand memory processes in JDM. An 

important constraint, however, is that in particular with visual presentation formats, 

conclusions can only be drawn reliably on the aggregate level, because inferences about the 

behavior of single participants comes at the risk that a participant does not show LAN in a 

sufficient number of trials and thus eye movements are not informative about the assumed 

retrieval processes. 



EYE MOVEMENT GUIDANCE DURING MULTI-ATTRIBUTE JDM  
 

54 

To get the most out of LAN for studying memory processes in JDM, we recommend 

that when visually presenting new decision options, they should be removed from the screen 

as soon as participants have encoded the attribute information. This can be achieved by being 

informed about expected reading or viewing times or by individual adjustments of the 

presentation durations (García-Pérez, 1998). Furthermore, providing outcome feedback during 

criterion learning is sufficient to elicit exemplar retrieval and LAN. However, individual 

learning performance should be assessed and controlled for. As outcomes of the decision-

making process including categorization decisions were comparable between conditions, a 

more explicit instruction on imagining past experiences during decision making could thus 

increase LAN in cases where there is good reason to assume that the instruction will not alter 

the decision process.  

Conclusions 

Process measures such as eye tracking provide valuable insights into JDM, even if relevant 

information must be retrieved from memory. By applying recent findings on how different 

sources of activation influence eye movements to the domain of JDM, we gained deep 

insights into when eye movements inform us about retrieval processes from memory and 

when they are mainly driven by features of the stimulus environment. The results highlight 

the potential of using eye movements based on the LAN behavior to study memory-based 

processes in JDM. 

  



EYE MOVEMENT GUIDANCE DURING MULTI-ATTRIBUTE JDM  
 

55 

Context paragraph 

 Agnes Rosner’s research focuses on the looking-at-nothing (LAN) behavior. Together 

with Bettina von Helversen, she uses it to study how memory about past instances influences 

current judgments and decisions. Both authors have found that to continue with this line of 

research, a better theoretical understanding is needed about the boundary conditions under 

which LAN behavior reflects memory processes in judgment and decision making. This was 

the starting point of the experimental series presented in this manuscript. Michael Schaffner 

later joined the author team by conducting the second experiment and contributing to the 

theoretical understanding of LAN during judgment and decision making.  
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Appendix A 

Item Sets Used in Experiment 1A and B 

Table A1 

Set Attribute 1: 
Language 
skills 

Attribute 
2: 
Computer 
skills 

Attribute 3: Work 
experience 

Attribute 4: 
Professional 
training 

Similarity Decision  

1 French LaTeX Building industry Web design 4 Invite  
2 Mandarin GIMP Finance Sales 4 Invite  
3 Russian HTML Automotive industry Human resources 4 Reject  
4 Spanish SQL Food service Marketing  4 Reject  
5 Spanish HTML Automotive industry Human resources 3 Reject  
6 Russian SQL Food service Marketing  3 Reject  
7 French HTML Automotive industry Human resources 3 Reject  
8 Russian LaTeX Automotive industry Human resources 3 Reject  
9 Russian HTML Finance Human resources 3 Reject  
10 Russian HTML Automotive industry Web design 3 Reject  
11 Spanish SQL Food service Sales 3 Reject  
12 Spanish GIMP Food service Marketing  3 Reject  
13 Mandarin SQL Food service Marketing  3 Reject  
14 Spanish SQL Building industry Marketing  3 Reject  
15 Mandarin GIMP Automotive industry Human resources 2 Ambiguous  
16 French LaTeX Automotive industry Human resources 2 Ambiguous  
17 Mandarin HTML Finance Human resources 2 Ambiguous  
18 Russian GIMP Finance Human resources 2 Ambiguous  
19 French HTML Building industry Human resources 2 Ambiguous  
20 Russian LaTeX Building industry Human resources 2 Ambiguous  
21 French HTML Automotive industry Web design 2 Ambiguous  
22 Russian LaTeX Automotive industry Web design 2 Ambiguous  
23 Spanish LaTeX Food service Web design 2 Ambiguous  
24 French SQL Food service Web design 2 Ambiguous  
25 Russian HTML Building industry Web design 2 Ambiguous  
26 Spanish SQL Building industry Web design 2 Ambiguous  
27 Mandarin HTML Automotive industry Sales 2 Ambiguous  
28 Russian GIMP Automotive industry Sales 2 Ambiguous  
29 Russian HTML Finance Sales 2 Ambiguous  
30 Spanish SQL Finance Sales 2 Ambiguous  
31 Spanish GIMP Food service Sales 2 Ambiguous  
32 Mandarin SQL Food service Sales 2 Ambiguous  
33 Spanish GIMP Finance Marketing  2 Ambiguous  
34 Mandarin SQL Finance Marketing  2 Ambiguous  
35 Mandarin GIMP Food service Marketing  2 Ambiguous  
36 French LaTeX Food service Marketing  2 Ambiguous  
37 Spanish LaTeX Building industry Marketing  2 Ambiguous  
38 French SQL Building industry Marketing  2 Ambiguous  
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Set Attribute 1: 
Language 
skills 

Attribute 
2: 
Computer 
skills 

Attribute 3: Work 
experience 

Attribute 4: 
Professional 
training 

Similarity Decision  

39 French LaTeX Building industry Human resources 3 Invite  
40 French LaTeX Automotive industry Web design 3 Invite  
41 French HTML Building industry Web design 3 Invite  
42 Spanish LaTeX Building industry Web design 3 Invite  
43 Russian GIMP Finance Sales 3 Invite  
44 Mandarin SQL Finance Sales 3 Invite  
45 Mandarin GIMP Food service Sales 3 Invite  
46 Mandarin GIMP Finance Marketing  3 Invite  
47 French LaTeX Finance Web design 3 Invite  
48 Mandarin GIMP Building industry Sales 3 Invite  

Note. Sets 1 to 4 (in italics) were training exemplars. 
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Appendix B 

Selection of Items Used in Experiment 2 Based on a Simulation With the Generalized 

Context Model 

Stimuli were chosen on the basis of a simulation with the generalized context model 

(GCM; for an overview see Nosofsky, 2011). Table B1 shows the simulation results. 

Parameter settings were chosen following the recommendations of Nosofsky and colleagues 

(Nosofsky, 1985, 2011; Nosofsky & Johansen, 2000). 

 In the GCM, the similarity 𝑠"# between item i and exemplar j is a function of the 

distance 𝑑"# between the item i and exemplar j (see Equation B1). Parameter p defines the 

shape of the similarity function, and parameter c is a sensitivity parameter. The larger the 

value of c, the faster similarity will fall off with increasing distance of attribute values. 

           𝑠"# = e'()*+
,

     (B1) 

The distance 𝑑"# is calculated by using the weighted Minkowski power model. That is, in the 

GCM, every exemplar j and item i is represented as a point in an M-dimensional 

psychological space (Nosofsky, 2011). The values 𝑥". and 𝑥#. in Equation B2 are the values 

of exemplar j and item i on dimension m. The parameter r determines the distance metric, and 

𝑤. is the attention weight for dimension m. The attention weight reflects the percentage of 

the attention to each dimension. The sum of all attention weights equals 1. 

     𝑑"# = 0	∑ 3	𝑤.4𝑥". − 𝑥#.4
67	8

.9: ;
<
=    (B2) 

The probability of choosing one category is calculated by summarizing the weighted 

similarities of item i to all exemplars from category ℑ and dividing them by the sum of the 

weighted similarities to all exemplars from all categories (see Equation B3). The number of 

training exemplars is denoted n, and 𝐾@ denotes the available categories. 𝑉#ℑ represents the 

memory strength of exemplar j in category ℑ. The response-scaling parameter γ defines the 

determinism in classifications. Response bias for category ℑ is denoted 𝑏ℑ. 
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      𝑃(ℑ|𝑖) =
IℑJ∑ K+ℑL*+M

+N< O
P

∑ IQ0∑ KRQL*RM
RN< ;PQS

QN<
    (B3) 

 

Table B1  

Simulation Results With the Generalized Context Model 
 
Exemplar/item 

no. Category Probability of choosing category B 
  Sensitivity = 1 Sensitivity = 2 

4 A .27 .12 
5 A .27 .12 
6 A .27 .12 
8 B .73 .88 
9 B .73 .88 
10 B .73 .88 
25 Ambiguous .50 .50 
26 Ambiguous .50 .50 
27 Ambiguous .50 .50 
28 Ambiguous .50 .50 
Note. Parameter settings: shape parameter p = 2 (2 is recommended for highly confusable 
stimuli; see Nosofsky, 1985), response biases 𝑏T= .5, attention weights 𝑤. = .5, response 
scaling γ = 1, distance metric r = 2 (2 is for Euclidean metric and is recommended for integral 
dimensions; see Nosofsky & Johansen, 2000). Training exemplars: 4, 5, 6 and 8, 9, 10; test 
items: 4, 5, 6, 8, 9, 10, and 25, 26, 27, 28. Saturation was multiplied by 0.5 to account for 
differences in step-size values in the Munsell color scheme. 
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Appendix C 

Munsell Keys (Hue, Brightness, Saturation) and Red, Green, Blue (RGB) Values of 

Stimuli in Experiment 2 

Table C1 

Exemplar/item no. Munsell key RGB value 
1 7.5R-6-4 185, 136, 136 
2 7.5R-7-6 227, 156, 152 
4 7.5R-5-6 172, 103, 99 
5 7.5R-6-8 213, 123, 116 
6 7.5R-7-10 255, 141, 130 
8 7.5R-4-8 157, 69, 65 
9 7.5R-5-10 198, 87, 79 
10 7.5R-6-12 239, 107, 93 
12 7.5R-3-10 139, 28, 33 
13 7.5R-4-12 178, 49, 46 
14 7.5R-5-14 220, 66, 58 
18 7.5R-8-8 255, 174, 164 
25 7.5R-4-6 145, 77, 74 
26 7.5R-5-8 186, 96, 89 
27 7.5R-6-10 227, 115, 104 
28 7.5R-7-12 255, 133, 117 

 
 


