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Abstract Finding a probable explanation for observed symp-
toms is a highly complex task that draws on information re-
trieval from memory. Recent research suggests that observed
symptoms are interpreted in a way that maximizes coherence
for a single likely explanation. This becomes particularly clear
if symptom sequences support more than one explanation.
However, there are no existing process data available that
allow coherence maximization to be traced in ambiguous di-
agnostic situations, where critical information has to be re-
trieved from memory. In this experiment, we applied memory
indexing, an eye-trackingmethod that affords rich time-course
information concerning memory-based cognitive processing
during higher order thinking, to reveal symptom processing
and the preferred interpretation of symptom sequences.
Participants first learned information about causes and symp-
toms presented in spatial frames. Gaze allocation to emptied
spatial frames during symptom processing and during the di-
agnostic response reflected the subjective status of hypotheses
held in memory and the preferred interpretation of ambiguous
symptoms. Memory indexing traced how the diagnostic deci-
sion developed and revealed instances of hypothesis change
and biases in symptom processing. Memory indexing thus

provided direct online evidence for coherence maximization
in processing ambiguous information.

Keywords Eyemovements . Process tracing .Memory
indexing . Diagnostic reasoning . Coherence maximization

Diagnostic reasoning involves finding a probable explanation
for a set of observations (Johnson & Krems, 2001; Meder,
Mayrhofer, & Waldmann, 2014; Patel, Arocha, & Zhang,
2005). A physician, for example, is required to find the most
likely cause for a patient’s symptoms. Usually, symptoms are
reported sequentially and have to be evaluated based on
knowledge stored in long-term memory (Mehlhorn, Taatgen,
Lebiere, & Krems, 2011; Thomas, Dougherty, Sprenger, &
Harbison, 2008). Symptom information can be sufficient to
determine a single explanation, but often the available infor-
mation supports more than one hypothesis (McKenzie, 1998)
and is thus ambiguous (Holyoak & Simon, 1999). An ambig-
uous case elicits differing final diagnoses from different diag-
nosticians. Each single diagnostician may adhere to an initial
hypothesis or adopt an alternative. In this study, we applied
eye tracking to investigate memory processes (memory
indexing) during diagnostic reasoning to reveal coherence
maximizing in symptom processing.

Previous research has shown that symptom processing in
memory is biased toward the hypothesis supported by symp-
toms presented early in the sequence (Baumann, Krems, &
Ritter, 2010; Busemeyer & Townsend, 1993; Lange,
Thomas, & Davelaar, 2012; Rebitschek, Bocklisch, Scholz,
Krems, & Jahn, 2015; Rebitschek, Scholz, Bocklisch,
Krems, & Jahn, 2012; Weber, Böckenholt, Hilton, &
Wallace, 1993), especially if the response is given after all
the symptom information has been received (end-of-sequence
response mode; Hogarth & Einhorn, 1992). These findings on
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the so-called diagnosis momentum (Croskerry, 2003) consti-
tute instances of confirmation bias (Nickerson, 1998) and can
be interpreted as a reasoner’s tendency to strive for a coherent
interpretation (Glöckner, Betsch, & Schindler, 2010; Holyoak
& Simon, 1999; Mehlhorn & Jahn, 2009; Kostopoulou,
Russo, Keenan, Delaney, & Douiri, 2012; Wang, Johnson,
& Zhang, 2006). The coherence effect is closely related to
research on information distortion (DeKay, Stone, &
Sorenson, 2011; Hagmayer & Kostopoulou, 2013; Russo,
Medvec, & Meloy, 1996; Strickland & Keil, 2011).
Incoherent representations are transformed into coherent rep-
resentations through information distortion to maximize co-
herence. Coherence can also be achieved by biased informa-
tion processing maximizing the belief in one hypothesis while
decreasing the belief in alternatives. Maximizing coherence
often favors the initially leading hypothesis, yet it can
strengthen an alternative hypothesis if stronger evidence for
this alternative has accumulated and a hypothesis change takes
place.

Coherence maximization has been studied by analyzing the
outcome of the reasoning process. For instance, symptom se-
quences with equal support for multiple hypotheses can pro-
vide evidence for coherence maximizing in unequal propor-
tions of diagnoses. Thus, the probability that a certain disease
has caused a patient’s symptoms given equal support for this
disease and an alternative (and equal base rates) is .5 (maxi-
mally ambiguous). Deviations of diagnosis proportions from
.5 indicate biased symptom processing to increase coherence
in a diagnostic decision. In previous studies with maximally
ambiguous sequences, the initial hypothesis was chosen as the
final diagnosis with a proportion higher than .5 (Rebitschek,
Bocklisch, et al., 2015).

Coherence maximization can be described by parallel
constraint-satisfaction models (Glöckner & Betsch, 2008;
McClelland & Rumelhart 1981; Read, Vanman, & Miller,
1997; Simon, Snow, & Read, 2004; Simon, Stenstrom, &
Read, 2015; Thagard, 1989). Theories of coherence maximi-
zation are grounded in cognitive consistency theories. At the
heart of cognitive consistency lies the Gestaltian principle that
human cognition is affected by mutual interaction among con-
stituent elements of a cognitive representation. In parallel con-
straint satisfaction models, the reasoning task is represented
by a network, in which symptoms and diagnoses are intercon-
nected by excitatory and inhibitory links representing positive
and negative relations between symptoms and diagnoses.
Bidirectional activation and inhibition settles the network in
a stable and thus coherent state favoring either one or the other
diagnosis.

Despite their merits, it is difficult to use these models to
clarify the underlying cognitive processes (Amaya, 2015;
Mehlhorn & Jahn, 2009; Rumelhart , Smolensky,
McClelland, & Hinton, 1986) that lead to the observed biases
in symptom processing. However, this clarification is

necessary to enable understanding of how coherence maxi-
mizing lends weight to one of two competing hypotheses,
and to clarify how the coherence maximizing process can
result in the selection of a less supported diagnosis. One im-
portant means of clarifying the cognitive processes is the col-
lection of process data to inform and enhance process models
of coherence-based diagnostic reasoning.

Process tracing methods, such as verbal protocols, infor-
mation boards, or Mouselab allow the study of information
processing prior to and during the response (for overviews,
see Glaholt & Reingold, 2011; Schulte-Mecklenbeck,
Kühberger, & Ranyard, 2011). However, memory-based rea-
soning processes usually cannot be observed because most of
the time cognition proceeds without systematic accompanying
overt actions. Recent research on the looking-at-nothing phe-
nomenon and the visual-world paradigm has shown that eye
movements are applicable to the study of real-time retrieval
processes (e.g., Hoover & Richardson, 2008; Johansson,
Holsanova, Dewhurst, & Holmqvist, 2012; Johansson,
Holsanova, & Holmqvist, 2006; Martarelli, Mast, &
Hartmann, 2017; Richardson & Kirkham, 2004; Richardson
& Spivey, 2000; Spivey &Geng, 2001) and language process-
ing (Allopenna, Magnuson, & Tanenhaus, 1998; Altmann,
2004; Altmann & Kamide, 2007, 2009; Tanenhaus, Spivey-
Knowlton, Eberhard, & Sedivy, 1995). Extending these re-
sults, memory indexing has been developed as a process mea-
sure to study higher level cognitive tasks (Renkewitz & Jahn,
2010, 2012) and has been successfully applied to study rea-
soning and decision making (Jahn & Braatz, 2014; Platzer,
Bröder, & Heck, 2014; Scholz, von Helversen, & Rieskamp,
2015). Inferring memory-based processing by observing eye
movements is possible because reactivating information that
is linked to a location reestablishes a spatial index that leads
the gaze to the relevant location (Huettig, Olivers, &
Hartsuiker, 2011; Johansson & Johansson, 2014; Scholz,
Mehlhorn, & Krems, 2016; Spivey & Dale, 2011).

Jahn and Braatz (2014) applied memory indexing to study
sequential diagnostic reasoning. Participants were told to
imagine they were physicians trying to identify the chemical
with which a worker in a chemical plant had been affected
during an accident (chemical accident task; Mehlhorn et al.,
2011). Information concerning the symptoms and the
chemicals that could potentially elicit such symptoms were
learned during a preceding learning phase. Symptom classes
and the chemicals (possible diagnoses) were associated to
spatial locations on a computer screen. During reasoning tri-
als, the spatial locations that previously contained information
during the learning phase were empty, and symptoms were
presented auditorily in sequence. Eye movements were re-
corded during reasoning trials. Gaze allocation to emptied
screen locations revealed the changing activation status of
hypotheses over the course of a reasoning trial and indicated
how symptoms were interpreted. For example, in trials with
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early symptoms supporting a hypothesis that had to be
changed to arrive at the correct diagnosis, fixation proportions
were highest for the initial hypothesis first and highest for the
correct hypothesis later. In the study by Jahn and Braatz
(2014), most symptom sequences had a single correct
diagnosis.

Present study

In the present study, we focused on exploring memory pro-
cesses during sequential diagnostic reasoning with ambiguous
symptom sequences to extend previous findings concerning
eye movements during decision making and diagnostic rea-
soning and to test process assumptions about coherence max-
imization. In everyday life, people are regularly faced with
complex, ambiguous situations that nonetheless call for a de-
cision (e.g., Holyoak & Simon, 1999). Studying ambiguity
allows one to specify how conflicting information is integrat-
ed and therefore presents a strong case of testing process as-
sumptions about coherence maximization. Ambiguity results
when two or more hypotheses are supported by the symptom
sequence, and there is no single correct diagnosis at the end
after all symptom information has been presented.We use two
hypothetical examples to illustrate this next.

First, consider the symptom sequence a-ab-ab-b. In this
sequence, a denotes a symptom that is caused by a Chemical
A but by none of the other chemicals in question and thus
strongly supports Chemical A as a candidate diagnosis; ab
denotes a symptom that is caused by Chemical A and by
Chemical B and thus supports two Chemicals A and B; and
b supports only Chemical B. In the sequence a-ab-ab-b, two
hypotheses are supported equally by the set of symptoms. A
second example of an ambiguous symptom set would be an a-
bd-a-ab sequence. This sequence contains support for the
Hypotheses A, B, and D, but with a clear ordering:
Hypothesis A is supported by three symptoms (two of which
are not caused by any other chemical), Hypothesis B is sup-
ported by two symptoms, and Hypothesis D is supported by a
single symptom only. Note that, like in the example before, the
first symptom elicits A as the leading hypothesis. The second
symptom, however, does not support A and suggests B or D
instead. Thus, B and D may be added to the set of considered
hypotheses and could become strengthened by coherence
maximizing in processing later symptoms, such that the final
diagnosis could be B although the sequence provides superior
support for A.

We tested ambiguous symptom sequences of this kind to
explore coherence maximization during diagnostic reasoning
by applying the memory indexing method. Recent research
has shown that biased information processing and information
distortion can increase or decrease the belief in a hypothesis
and explain diagnostic preferences beyond mere retrieval

processes. In the framework of parallel constraint satisfaction
models, these processes are implemented by bidirectional as-
sociations between symptoms and hypotheses that settle a
network toward a coherent explanation of given information.
Following this line of research, we aimed to demonstrate that
eye movements could trace the changing activations resulting
from the mutual interactions between symptom information
and diagnoses held in memory.

In a first set of analyses, we clarified the broader relation
between eye movements and the outcome of the reasoning
process; that is, the diagnostic response (Hypothesis 1).
Based on the literature review, wewanted to replicate previous
findings on the relation between eye movements and complex
thinking processes (Hypotheses 2 and 5). This first set of
analyses aimed to further strengthen our methodological ap-
proach and can be seen as testing preconditions for our second
set of analyses. In the second set, we tested more specific
hypotheses on the effects of coherence maximization during
diagnostic reasoning (integrated probability matching,
Hypothesis 3; hypothesis changes, Hypothesis 4). Next, we
outline all hypotheses in more detail.

Hypothesis 1: Gaze behavior and diagnostic response

We assume that if gaze data indeed reflect memory retrieval in
ambiguous diagnostic situations, eye gaze should correspond
to the outcome of the reasoning process. In decisionmaking, it
has been shown that the preferred option was gazed at longer
(Stewart, Hermens, & Matthews, 2015; for an overview, see
Orquin &Mueller Loose, 2013). Additionally, recent research
on diagnostic reasoning has shown that eye movements can
reflect symptom integration in memory and that eye move-
ments can indicate the diagnostic response (Jahn & Braatz,
2014). Based on these findings, we assume that gaze duration
to an alternative during diagnostic reasoning and processing
of an ambiguous symptom sequence should predict how likely
this alternative is to be chosen at the end of the reasoning
process.

Hypothesis 2: Location matching

When the first symptom establishes a single leading hypothe-
sis, gaze data following the presentation of this symptom
should reflect which hypothesis it supports and thus the cor-
rect retrieval of the symptom location from memory.
Consequently, if only one hypothesis is supported by the first
symptom, this hypothesis should be gazed at longer than any
other hypothesis. Such momentary probability matching has
only once been shown in diagnostic reasoning (Jahn &Braatz,
2014). It would be in line with previous findings on the
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looking-at-nothing phenomenon (e.g., Richardson & Spivey,
2000).

Hypothesis 3: Integrated probability matching

If eye movements can trace coherence maximization during
sequential diagnostic reasoning, eye movements during later
symptom presentations should reveal the integration of symp-
tom information (see Renkewitz & Jahn, 2012; Jahn&Braatz,
2014; Scholz et al., 2015). For instance, if a later symptom
supports two alternatives, gaze duration should be longer to-
ward the leading hypothesis. Alternatively, if gaze behavior
merely reflects retrieval processes without revealing symptom
integration, when being presented with a symptom that is
equally strongly associated with two hypotheses, participants
should look at both diagnoses for about the same duration.
Recent findings on gaze allocation during diagnostic reason-
ing suggest that eye movements reflect integrated probability
matching and thus reasoning instead of just memory retrieval.
However, there has been no statistical test of this hypothesis.

Hypothesis 4: Hypothesis change

When being presented with an ambiguous symptom se-
quence, a person’s belief can change from the leading to an
alternative hypothesis, when enough evidence for an alterna-
tive hypothesis has accumulated. Coherence maximization
can affect this symptom integration process. For instance, co-
herence maximization can lead to participants not changing
their belief by distorting information supporting an alternative
hypothesis, leading them to respond with the initial hypothe-
sis. Assuming that memory-indexing gaze data reveal a par-
ticipant’s currently-preferred hypothesis, if the proportion of
fixations toward a hypothesis stays about the same throughout
the symptom sequence, this would indicate that a hypothesis
change is unlikely to have occurred. By contrast, if there is a
change in the proportion of fixations to the leading hypothesis
over the symptom sequence, this would likely suggest the
occurrence of a hypothesis change. Thus, if eye movements
reflect processes of coherence maximization, differences in
fixation proportions between the beginning and the end of a
symptom sequence should predict the hypothesis change.

Coherence maximization can also affect information pro-
cessing after a hypothesis change has taken place. Biased in-
formation processing can strengthen the alternative hypothesis
even if no further evidence supporting this hypothesis is pre-
sented (Holyoak & Simon, 1999). If the memory indexing
gaze data are able to reveal such biases in information pro-
cessing, we should observe fixations that are unrelated to the
current symptom. That means, the most fixated hypothesis

could be the alternative hypothesis and not the hypothesis that
is supported by the symptom sequence.

Hypothesis 5: Response matching

In decision making it has been shown that people choose the
option for which the most evidence has been accumulated
(Busemeyer & Townsend, 1993, Krajbich, Armel, &
Rangel, 2010). Further, fixation durations get longer for the
option that is finally chosen (gaze-cascade, e.g., Fiedler &
Glöckner, 2012; Glaholt & Reingold, 2011; Shimojo,
Simion, Shimojo, & Scheier, 2003). Congruently and in line
with previous findings, we expect that fixations directed to-
ward a participant’s final diagnosis will increase toward the
end of the reasoning trial and will be at the highest proportion
during the response interval. Table 1 provides an overview of
the tested gaze hypotheses and the main results.

Method

The study consisted of a learning phase followed by a reason-
ing phase. The reasoning task required participants to deter-
mine the most likely cause of a patient’s symptoms. In the
learning phase, participants first learned how symptoms are
assigned to symptom classes, and then how symptom classes
relate to chemicals. Participants were informed that the pa-
tients in need of diagnosis were workers employed in a chem-
ical plant, that their symptoms were caused by one of the
processed chemicals, and that each patient was affected by
only one of the listed chemicals (the chemical list was exhaus-
tive with mutually exclusive explanations). Associations be-
tween symptom classes and chemicals were established by
presenting symptom classes in rectangular frames in the
screen quadrants that each represented one chemical (see
Fig. 1). During reasoning, symptoms were presented audito-
rily while participants observed the emptied rectangular
frames. Eye movements were recorded throughout the reason-
ing phase, and the diagnostic decision was collected at the end
of each reasoning trial.

Participants

Of the 34 participants, for whom calibration of the eye tracker
succeeded to an accuracy of at least 2° of visual angle, two
participants were excluded because eye-tracking accuracy
decreased during the experiment. The final 32 participants
were all students from Chemnitz University of Technology
(21 female, 11 male), with a mean age of 22.4 years (ranging
from 19 to 39 years). All had normal or corrected-to-normal
vision.
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Apparatus

Participants were seated at a distance of 63 cm in front of a 22-
in. computer screen (1680 × 1050 pixels). Stimuli were

presented via E-Prime 2.0. Auditory recordings were present-
ed through headphones and responses were given on a stan-
dard keyboard. An SMI RED remote eye tracker sampled data
from the right eye at 120 Hz. Gaze data were recorded with

Table 1 Study hypotheses and results on memory indexing gaze behavior

Hypothesis 1: Gaze behavior and diagnostic response

Gaze behavior can predict the diagnostic response Fixation proportions toward the A chemical are a significant predictor for
the A response. Thus, the longer participants gaze toward the A chemical
during the four symptom intervals, the higher the A response proportion.
(Confirmed)

Hypothesis 2: Location matching

Gaze data following the presentation of the first symptom reflect which
hypothesis this symptom supports

Participants fixate the chemical being supported by the first symptommuch
longer than chance level would predict, thus corroborating our
hypothesis on location matching. (Confirmed)

Hypothesis 3: Integrated probability matching

Eye movements during later symptom presentations reveal the integration
of symptom information beyond mere memory retrieval.

When listening to a symptom that is associated with two hypotheses,
participants gaze longer toward the hypothesis that received more
support during the sequence of presented symptoms. (Confirmed)

Hypothesis 4: Hypothesis change

The change in gaze durations toward an alternative predicts a hypothesis
change. After a hypothesis change, fixations were unrelated to the
current symptom.

The difference in A-fixation proportions from the first to the last two
symptom intervals predicts the response (A vs. not A).

After a hypothesis change, participants fixated most on the alternative
hypothesis and not on the hypothesis supported by the symptom
sequence. (Confirmed)

Hypothesis 5: Response matching

Fixations directed toward a participant’s final diagnosis increase toward the
end of the reasoning trial and will be at the highest proportion during the
response interval.

Fixation proportions increased for the chosen hypothesis from the third
symptom interval until the response interval. When giving the response,
participants gazed longer toward the chosen hypothesis than chance level
would predict. (Confirmed)

Fig. 1 Left: Spatial arrangement of the four chemicals and the symptom
classes that each chemical could cause as it was presented during
learning. Each of the four screen quadrants represented one chemical
and each chemical consisted of three symptom classes. When being
tested during learning, participants listened to single symptoms while
the arrangement was emptied (as shown on the right) and had to
indicate the corresponding chemical. For example, hearing Bsting^ they
were supposed to indicate the top left quadrant because sting belonged to
the pain class of symptoms. Participants indicated their response by the
corresponding top left response key. Right: Emptied spatial arrangement

shown during the reasoning phase. Participants listened to four symptoms
and had to indicate which chemical most likely caused the symptoms.
The sequence sting, rash, eyelid swelling, and lacrimation is an example
of an a-ac-b-b sequence. In the example, the top left chemical is in the A
role supported by sting (pain) and rash (skin); the top right chemical is in
the B role supported by eyelid swelling (eyes) and lacrimation (eyes); the
bottom left chemical is in the C role supported only by rash (skin). The D
chemical was not supported by symptoms presented in this sequence and
was located diagonally to the A chemical (see main text for more
information)
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iView X 2.5 following 5-point calibration and analyzed with
BeGaze 2.3. Fixation detection used a dispersion threshold of
80 pixels and a duration threshold of 100 ms. For the statistical
analyses we used the R language (R Core Team, 2016) and
JASP 0.8.0.0 (JASP Team, 2016).

Material

The four chemicals were assigned to screen quadrants (see
Fig. 1, left). Each quadrant enclosed three rectangular frames,
which contained the three symptom classes that the respective
chemical could cause. For example, the chemical at the top left
in Fig. 1 triggered symptoms derived from the symptom clas-
ses circulation, pain, and skin. One symptom class was unique
(pain for the top left chemical) and two symptom classes were
shared with other chemicals. Table 2 lists all eight symptom
classes and symptoms.

Frames containing symptom classes were arranged in a
circle. The distance between the center of the screen and the
center of each rectangle was 12.2° of visual angle. The four
symptom classes that were uniquely caused by a chemical
were presented in the center of the respective quadrant (e.g.,
the symptom class pain in the center of the top left quadrant in
Fig. 1 is located between the symptom classes circulation and
skin). The symptom classes that were triggered by two
chemicals featured in two quadrants and were presented in
two neighboring frames of the circle (e.g., circulation in
Fig. 1 is located top right and top left).

Symptoms from symptom classes that were associatedwith
one chemical are denoted with a single small letter (a, b, c, or
d). Symptoms from symptom classes that were associated
with two chemicals are denoted with two small letters (e.g.,
symptom ab can be caused by Chemical A and Chemical B).

A single trial in the reasoning phase consisted of four
symptoms presented auditorily; for example, sting, rash, eye-
lid swelling, and lacrimation (Fig. 1, right). In this example,
sting (belonging to the pain class) supported the top left chem-
ical; rash (skin) supported the top left and the bottom left

chemicals, and eyelid swelling (eyes) and lacrimation (eyes)
supported the top right chemical. The chemical that was as-
sumed to have an advantage in participants’ diagnostic rea-
soning is the chemical in the A role (henceforth called A chem-
ical). The advantage may have been due to (1) the chemical
being supported by more symptoms than alternative
chemicals, or (2) it having received equal support like alterna-
tives but benefited from being supported by the first symptom,
or (3) the chemical being supported by an equal number of
symptoms but by more diagnostic symptoms or symptoms
from more than one symptom category. The competing alter-
native chemical in this study is referred to as the chemical in
the B role (henceforth called B chemical), with further com-
petitors referred to as C and D chemicals. Note that the chem-
ical roles changed from trial to trial. Thus, the eye symptom
could support a chemical in the A role in one trial but support a
chemical in the C role in another trial.

Sixteen symptom sequences were constructed that
contained support for two or three hypotheses and consisted
of symptoms that supported either one or two hypotheses. A
subset of nine sequences shown in Table 3 was selected to
demonstrate how memory indexing tracks the subjective sta-
tus of hypotheses and provides information about coherence
maximization. In all of the selected sequences, the first symp-
tom established a single leading hypothesis. The development
of a coherent explanation can most clearly be observed when
the first symptom supported one hypothesis. The remaining
seven sequences mainly differed from the selected sequences
in the order of symptom presentation and in the first symptom
supporting two hypotheses (A and C or A and B). The full set
of sequences and a discussion of order effects on response
proportions are included in the Supplemental Materials.

The nine selected sequences varied in the number of con-
secutive symptoms that supported the A hypothesis from the
beginning of the sequence onward (see Table 3). Sequence 1
in Table 3 started with three symptoms supporting A (a-ab-ab-
b). Sequence 2 started with two symptoms supportingA (a-ac-
b-b). Sequences 3 and 4 started with a single a symptom (a-
bd-bd-a and a-bd-a-ab). Sequence 5 started with one

Table 2 Symptom classes and symptoms (originally in German)

Symptom class Symptom Symptom

Eyes (Augen) Eyelid swelling (Lidschwellung) Lacrimation (Tränenfluss)

Respiration (Atemwege) Difficulty breathing (Erstickungsgefühl) Cough (Husten)

Neurological (Nervensystem) Speech disorder (Sprachstörung) Paralysis (Lähmung)

Circulation (Kreislauf) Sweating (Schwitzen) Fainting (Ohnmacht)

Pain (Schmerzen) Twinge (Stechen) Sting (Brennen)

Skin (Haut) Rash (Ausschlag) Acid burn (Verätzung)

Digestion (Verdauung) Vomiting (Erbrechen) Diarrhoea (Durchfall)

Psychoactive (Psychoaktiv) Aggression (Aggressivität) Anxiety (Angstzustände)
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symptom supporting B (b-ab-ac-ac). Sequences 6 and 7
started with two symptoms supporting B (b-b-ac-a and b-b-
a-ac). Sequences 8 and 9 again started with one symptom
supporting A and only differed in the second symptom either
supporting B or D.

For each symptom sequence, each of the four chemicals
appeared once in the A role. This was possible due to the sym-
metrical symptom class patterns of the chemicals. All possible
assignments of symptoms (e.g., lacrimation) to symptom se-
quences (e.g., a-ab-ab-a) were constructed with the restriction
that no single symptom occurred twice in the same symptom
sequence (e.g., lacrimation occurred only once within the se-
quence a-ab-ab-a). Each sequence was tested four times per
participant, with each chemical assuming theA role, resulting in
64 (16 sequences × 4 chemicals) trials per participant.

Procedure

Participants first learned about symptoms and the eight symp-
tom classes that they belonged to. Learning of symptoms and
symptom classes proceeded by categorizing single symptoms
in one of eight symptom classes (see e.g., Jahn & Braatz,
2014; Rebitschek, Krems, & Jahn, 2015) and continued until
all symptoms had been answered correctly once in sequence.
Learning about symptoms and symptom classes took 11 min
on average (SD = 10 min).

In the next phase, participants learned about the four
chemicals. They studied the spatial layout as shown in the left
half of Fig. 1. During test trials, participants saw only the emptied
spatial frames (Fig. 1, right), and single symptoms were present-
ed auditorily. Participants were not explicitly instructed to look at
the spatial frames, neither during learning nor during the reason-
ing phase. They responded by indicating which chemical could
have caused the presented symptom by pressing one of four keys
on a number block of a keyboard. The keys matched the spatial

positions of the chemicals (e.g., number 1 indicated the chemical
at the bottom left). Feedback was provided auditorily and visu-
ally (see Jahn & Braatz, 2014). Learning lasted until participants
assigned 95% of all symptoms correctly. Learning which symp-
tom classes could be caused bywhich chemicals took 10minutes
on average (SD = 9 min).

Each reasoning trial was initiated by the participant by
pressing the space bar. The next slide showed the emptied
rectangular frames (Fig. 1, right) and participants were audi-
torily presented with a sequence of four symptoms. Each
symptom presentation lasted 1,000 ms followed by a delay
of 2,000 ms. After the fourth symptom and the delay, the
response interval started. Participants indicated their diagnosis
using the same keys as practiced during learning. Response
time was not restricted. On average participants took 2,750 ms
(SD = 2367 ms) to respond.

After solving three practice trials at the beginning of the
reasoning phase, the eye tracker was calibrated. Participants
then worked through 64 reasoning trials which took on aver-
age 21 minutes (SD = 3 min).

Results

Mean response proportions and mean fixation proportions
based on fixation durations are reported for the subset of nine
sequences (for an overview of the sequences see, Table 3,
second column). Response data for all tested sequences are
presented in the Supplemental Materials.

Diagnostic response

Diagnostic responses were recorded after the sequence of four
symptoms had been presented (end-of-sequence response
mode). Participants chose one of the four chemicals (A, B,

Table 3 Mean response proportions, standard deviations, and within-subjects 95% confidence intervals (Morey, 2008) for nine symptom sequences

No. Sequence Response A Response B Response D

M (SD) 95% CI M (SD) 95% CI M (SD) 95% CI

1 a-ab-ab-b 0.54 (0.23) [0.46, 0.63] 0.44 (0.23) [0.35, 0.52]

2 a-ac-b-b 0.40 (0.39) [0.29, 0.51] 0.58 (0.30) [0.46, 0.69]

3 a-bd-bd-a 0.54 (0.28) [0.44, 0.64] 0.31 (0.23) [0.23, 0.39] 0.12 (0.15) [0.06, 0.17]

4 a-bd-a-ab 0.77 (0.19) [0.69, 0.84] 0.18 (0.21) [0.10, 0.26]

5 b-ab-ac-ac 0.57 (0.26) [0.47, 0.66] 0.25 (0.28) [0.15, 0.35]

6 b-b-ac-a 0.40 (0.34) [0.27, 0.52] 0.53 (0.36) [0.40, 0.67]

7 b-b-a-ac 0.36 (0.32) [0.24, 0.47] 0.59 (0.33) [0.47, 0.71]

8 a-b-ab-ac 0.73 (0.24) [0.65, 0.82] 0.21 (0.21) [0.13, 0.29]

9 a-d-ab-ac 0.63 (0.27) [0.54, 0.73] 0.18 (0.20) [0.10, 0.25]

Italics mark the consecutive symptoms (three, two, one, or zero) that supported the A hypothesis from the beginning of the sequence onward
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C, or D chemical) as the most likely cause of the presented
symptoms.

Participants almost always chose one of the contending
hypotheses, choosing a chemical that was not supported by
the symptom sequence in only 37 trials (1.8% of all trials). In
38 trials (1.9% of all trials), they chose the diagnosis that was
only weakly supported by a single symptom when this symp-
tom also pointed to a more supported chemical (e.g., C re-
sponse after a-ac-b-b). These cases were excluded from fur-
ther analysis. Table 3 shows response proportions for the nine
sequences and separately for each response.

The A response proportions were the highest for Sequences
4, 8, and 9 in Table 3, in which A received superior support.
Unsurprisingly, people most frequently chose A for these se-
quences. When multiple hypotheses were supported by two
symptoms each (Table 3, Sequences 2, 3, 6, and 7), partici-
pants more often chose the hypothesis supported by two
symptoms from the same symptom class (b and b or a and
a) rather than selecting a competing hypothesis supported by
symptoms that (singly or both) were associated with two
chemicals (a and ac or bd and bd): Symptoms supporting only
one hypothesis (highly diagnostic) were thus evaluated as
stronger evidence than symptoms supporting two hypotheses.
See Supplemental Materials for a more detailed discussion of
this finding.

Memory indexing gaze behavior

To analyze gaze behavior, we first computed the proportion of
trial duration per trial for which no gaze data had been record-
ed. Trials were discarded if more than 40% of gaze data were
missing (4.9% of all trials; see Renkewitz & Jahn, 2012). For
one participant, more than 40% of gaze data were missing in
every trial, leaving a sample of 31 participants for these anal-
yses. Four areas of interest (AOIs) were defined correspond-
ing to the four quadrants representing the four chemicals. The
AOIs were denoted A, B, C, and D according to the four
chemical roles (remember that quadrants’ roles differed from
trial to trial). The center of the screen (a circular area around
the center of the screen with a diameter of 5.1° of visual angle)
was not included in the analysis. Figure 2 shows plots of mean
fixation proportions, aggregated over trials and participants,
across the five time intervals for the first five symptom se-
quences that were presented in Table 3. These five sequences
were representatives of each class of items (see Fig. S1). Plots
on memory indexing gaze data of Sequences 6 to 9 of Table 3
are included in the Supplemental Materials. To show differ-
ences in symptom processing resulting in one or the other
diagnosis (coherence maximizing), there are separate plots
for trials with A, B and D responses (left, middle, and right

column, respectively). Over all responses and sequences,
these plots show that symptoms are interpreted and integrated
with previous symptoms after presentation. Gaze allocation
toward the chemical quadrants measured by fixation propor-
tions differs markedly for the same sequence depending on the
finally chosen diagnosis, even after two or three symptoms. In
trials with A responses, the A-fixation proportion dropped
when the earlier symptoms supported an alternative hypothe-
sis. Similarly, in trials with B-responses fixation proportions
for B increased the earlier a B-supporting symptom was pre-
sented, leading to a hypothesis change if the sequence started
with a (see top to bottom ordering of sequences in Fig. 2). In
the sequence a-bd-bd-a (Fig. 2.3), a third hypothesisDwas as
supported as B. In trials with D responses, the most fixated
quadrant shifted from A to D.

The following analyses focus on showing that gaze data
can predict responses, the generation of a leading hypothesis,
integration of symptom information, and biased symptom pro-
cessing to maximize coherence that either favors the leading
hypothesis or results in a hypothesis change. Finally, we ana-
lyze gaze data during the response interval.

Hypothesis 1: Gaze behavior and diagnostic response To
show a link between memory indexing gaze data and the
outcome of the reasoning process, we applied linear mixed-
effects logistic regression modeling (Bates, Maechler, Bolker,
& Walker, 2015). Therefore, we first computed fixation pro-
portions toward the A chemical over the four symptom pre-
sentations and related them to a binary coding of the diagnos-
tic response, that is, deciding for or against the A chemical.1

Mixed-effects modeling with by-subject and by-item random
intercepts and a fixed effect for A-fixation proportions predict-
ed the A responses significantly better than a model consisting
only of by-subject and by-item intercepts as obtained by a chi-
square likelihood ratio test of model 1 against the null model,
AICnull = 1395, AICmodel 1 = 1324, χ 2(1) = 72.7, p < .001,

1 In the sequence b-ab-ac-ac (Fig. 2.5), the leading hypothesis after the first
symptom is B. To be able to analyze the data over all five sequences, for all
analyses, the sequence b-ab-ac-ac was recoded by reversing the A and B roles
so that the b symptom became an a symptom and the ac symptoms became bd
symtpoms, resulting in the sequence a-ab-bd-bd. Similarly, the sequence b-b-
ac-a was recoded to a-a-bd-b and the sequence b-b-a-ac to a-a-b-bd (see
Table 3, Sequences 6 and 7).

�Fig. 2 Mean proportions of fixation times in each interval that fell upon
the A, B, C, or D quadrants for four ambiguous symptom sequences with
two contending hypotheses (A responses left column, B responses middle
column) and one ambiguous sequence with three contending hypotheses
(additionally D responses right column). The number of participants
shows how many participants responded at least once with the A, B, or
D response. X-axis labels show the five symptom intervals with the
respective symptoms. Error bars represent within-subjects 95% CIs
(Color figure online)

b
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Nagelkerke’s R2 = 9.0, N = 1,073. Additionally, the fixed ef-
fect A-fixation proportions significantly predicted the final
choice as revealed by the Wald-statistic (also known as z sta-
tistic) testing whether the fixed-effect coefficient significantly
differed from zero (see Table 4, Model 1). Each increase in A-
fixation proportions by 0.1 increased the odds for an A re-
sponse by 20.9%.

Hypothesis 2: Location matching In the first symptom inter-
val, fixation proportions should reflect how much the first
symptom supported each individual hypothesis (momentary
probability matching). The first four symptom sequences (see
Figs. 2.1–2.4) began with an a symptom. Accordingly, the A
quadrant in the first interval should be fixated on longer than
the other three spatial areas B, C, and D. Likewise, in the
symptom sequence commencing with a b symptom (see
Fig. 2.5), B should be fixated on longer than A. Given four
possible diagnoses, fixation proportions toward the chemical
supported by symptoms during the first symptom interval
should differ significantly from the chance level of .25. As
expected and confirmed by a one-sample t test, during the first
symptom interval, participants gazed at the chemical support-
ed by the first symptom (M = 0.44, SD = 0.19) longer than
predicted by chance, t(30) = 5.6, p < .001, 95% CI [0.37,
0.51], d = 1.0.

Hypothesis 3: Integrated probability matching If eye
movements can demonstrate the integration of symptom in-
formation beyond mere symptom retrieval, then when listen-
ing to a symptom supporting two chemicals, participants
should gaze longer toward the more supported chemical. For
instance, when listening to Bsweating^ that is associated with
two chemicals, such as A and B (see Fig. 1), participants
should look longer toward the A than the B chemical when
A is the leading hypothesis. Alternatively, if it is merely re-
trieval that automatically guides the eyes to all associated spa-
tial locations, when listening to Bsweating,^ the A and B chem-
ical should be looked at for about the same duration.

In all sequences presented in Fig. 2, a single hypothesis (the
A chemical) was established as leading hypothesis, followed
by symptoms supporting an alternative hypothesis B1.
Following the hypothesis on integrated likelihood matching,
fixation durations should be longer for the A chemical than for
the B chemical when listening to an ab symptom. In order to
test this, fixation durations2 were aggregated for all sequences
and participants for the ab symptoms. In cases with two ab
symptoms in one sequence (e.g., Sequence 1 in Fig. 2), we
aggregated fixation durations for the two respective intervals.
A paired t test supports the hypothesis on integrated probabil-
ity matching: MA = 891.1 ms, SDA = 514.6 ms, MB =
385.8 ms, SDB = 220.9 ms, t(30) = 6.84, p < .001, 95% CI
[354.4, 656.1], d = 1.23. That is, participants looked longer
toward the chemical that received more support during the
sequence of presented symptoms. Consequently, the null hy-
pothesis that eye movements merely show retrieval processes
should be rejected.

Hypothesis 4: Hypothesis change To test whether a change
in fixation proportions can predict the dichotomized diagnos-
tic response (A or not A), we ran a second analysis of fixation
proportions with a mixed-effects logistic regression model. In
this model we included the change in fixation proportions as
well as the A-fixation proportions as predictors for the dichot-
omized diagnostic response. To arrive at a measure for the
change in fixation proportions, we first computed two A-fixa-
tion proportions: one for the first two symptom intervals com-
puted from fixation durations during the first and second
symptom presentations, and another for the last two symptom
intervals computed from fixation durations during the third
and fourth symptom presentations. Second, we subtracted
the A-fixation proportions for the last two intervals from the
A-fixation proportions for the first two intervals. If the

Table 4 Coefficients of mixed-effects logistic regression and z statistics testing A-fixation proportions over all four symptom presentations (Model 1)
and A-fixation proportions plus the proportional change in fixations from the first to the last two symptom intervals (Model 2) as predictors of the final A
response

Model 1 Model 2

b
[95% CI]

z p b
[95% CI]

z p

Intercept -0.54
[-1.02, -0.05]

-0.46
[-0.94, 0.03]

A-fixation proportions 1.90
[1.45, 2.36]

8.2 <.001 1.96
[1.50, 2.43]

8.3 <.001

Diff. A-fixation proportions -0.83
[-1.21, -0.45]

-4.3 <.001

2 For this analysis, we used fixation durations because fixation proportions
toward the A chemical diminish with an increase in fixation proportions toward
B. Similarly, fixation proportions toward B diminish with an increase in fixa-
tion proportions toward A. Thus, fixation proportions toward different
chemicals are not independent of each other.
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resulting difference in A-fixation proportions (first minus last
two symptoms) has a value greater than zero, this means that a
participant’s orientation toward the A chemical was stronger in
the first two symptom intervals than during the last two symp-
tom intervals. By contrast, a value smaller than zero indicates
that a participant’s orientation toward the A-chemical in-
creased from the first two to the last two symptom intervals.
A value around zero means that A-fixation proportions were
similar during the first two and last two symptom intervals.
Mixed-effects modeling showed that a model with by-subject
and by-item random intercepts, and fixed effects for the A-
fixation proportions and the difference in A-fixation propor-
tions, predicted the A responses significantly better (chi-
square likelihood ratio test) than a model consisting of A-fix-
ation proportions as a single fixed effect and by-subject and
by-item intercepts, AICmodel 1 = 1324, AICmodel 2 = 1307, χ
2(2) = 19.06, p < .001, Nagelkerke’s R2 = 2.5, N = 1,073. The
difference in A-fixation proportions significantly predicted the
final choice as tested with the Wald-statistic (see Table 4,
Model 2). Each increase in the early-minus-late-difference in
A-fixation proportions by 0.1 decreased the odds for an A
response by 8.0%.

In addition, following a hypothesis change, fixation pro-
portions changed away from the presented symptom informa-
tion (fixations unrelated to the current symptom). This became
visible in cases where participants changed their belief away
from the leading A hypothesis following the presentation of an
inconsistent bd symptom (Sequence 3: a-bd-bd-a and
Sequence 4: a-bd-a-ab in Fig. 2). When listening to a bd
symptom, participants gazed longer toward the B or D chem-
ical than toward the A chemical. In the a symptom interval
following the presentation of the bd symptom, fixation pro-
portions significantly increased for the diagnosis that was cho-
sen—not just if the final diagnosis was A but also if the final
diagnosis was B or D. In order to test the reliability of this
pattern, we compared mean fixation proportions toward the
chosen diagnoses for the bd-symptom interval (M= 0.35,
SD = 0.33) with the immediately following a-symptom inter-
val (M= 0.51, SD = 0.32), t(29) = -2.95, p = .006, 95% CI [-
0.28, -0.05], d = 0.6. In the immediately following a-symptom
interval and when responding with B or D (mean fixation
proportion for B and D: M= 0.60, SD = 0.35), the A hypoth-
esis was almost never gazed at (M= 0.11, SD = 0.18), t(20) =
4.91, p < .001, 95%CI [0.28, 0.69], d = 1.1. Thus, participants
finally choosing B or D only infrequently looked at the loca-
tion of the A chemical even when an a symptom was present-
ed. Instead, they looked at the location of the chemical they
believed in.

Hypothesis 5: Response matching To determine whether
fixation proportions directed toward a participant’s final diag-
nosis (e.g., A-fixation proportions when choosing the A diag-
nosis) increased toward the end of the reasoning trial, a

repeated-measures ANOVA comparing fixation proportions
between the third (M3 = 0.33, SD3 = 0.12), fourth (M4 =
0.37, SD4 = 0.13), and response (Mresp= 0.44, SDresp = 0.18)
intervals for the chosen diagnosis was conducted. The test
revealed a significant increase in fixation proportions ap-
proaching the response interval, Greenhouse–Geisser
corrected, F(2, 41.7) = 15.96, p < .001, η p

2 = .35.
Furthermore, during the response interval itself, participants’
fixation proportions were the highest for the chosen diagnosis
(see Fig. 2) as confirmed by a one-sample t test comparing
fixation proportions to the chance level of .25, t(30) = 5.89,
p < .001, 95% CI [0.38, 0.51], d = 1.1.

Discussion

In everyday life, humans have to cope with ambiguous, un-
certain situations. This is particularly evident when people
have to find an explanation for a set of inconclusive observa-
tions. How do people cope with ambiguity in such challenging
instances of diagnostic reasoning? Outcome data suggest that
people strive for a coherent interpretation of observations
(Glöckner et al., 2010; Holyoak & Simon, 1999; Mehlhorn
& Jahn, 2009; Kostopoulou et al., 2012; Wang et al., 2006). A
coherent interpretation can be achieved through biased infor-
mation processing and information distortion. Observing such
processes directly had not been done before, because methods
were missing that could reveal the changing activation status
of hypotheses over the course of a reasoning trial. We tested
coherence maximization during diagnostic reasoning
using memory indexing—a new method that is based
on observing eye movements while participants solve
memory-based, higher level cognitive tasks (Jahn &
Braatz, 2014; Renkewitz & Jahn, 2010, 2012; Scholz
et al., 2015). This study provides evidence that eye
movements reflect the tendency to maximize coherence
in diagnostic reasoning. The current experiment showed
these effects with symptom sequences that were highly
ambiguous and supported the initial hypothesis with
more or fewer symptoms in a row.

At the beginning of a reasoning trial, gaze behavior
reflected the momentary probability of hypotheses given the
presented symptom information (location matching,
Hypothesis 2), replicating previous findings on the looking-
at-nothing behavior (e.g., Richardson & Spivey, 2000). Eye
movements, however, did not only reflect (automatic) retriev-
al processes initiated by hearing an auditorily presented symp-
tom. Instead, eye movements reflected the tendency to strive
for a coherent interpretation of symptom information. This
became evident during later symptom presentations, in which
eye movements were predominantly directed to locations of
symptom interpretations consistent with the leading hypothe-
sis and not to all locations that were associated with the

Psychon Bull Rev



presented symptom (integrated probability matching,
Hypothesis 3; fixations unrelated to the current symptom,
Hypothesis 4). This finding is in line with previous research
demonstrating symptom integration with varying symptom
strengths (Jahn & Braatz, 2014, see also Altmann &
Kamide, 2007, 2009; Scholz et al., 2015, for similar
interpretations of their results). In this study, the location of
the symptom classes (small rectangular areas within quad-
rants) coincided with the chemical locations (the quadrants).
Therefore, it is difficult to quantify the amounts of retrieval
versus processing of information held in memory and their
relation to the resulting fixation duration. All information
was learned by heart and tested equally often, which should
keep the retrieval effort and time about constant. Thus, the
observed differences in fixation proportions can be attributed
to differences in information processing. Still, future research
is needed to quantify to what extent eye movements reflect
retrieval and processing of information held in memory. Initial
attempts to disentangle these processes with eye movement
measures exist, but thus far these have led to differing results
(Glaholt & Reingold, 2011; Horstmann, Ahlgrimm, &
Glöckner, 2009, Klichowicz, Scholz, Strehlau, & Krems,
2016).

A change in fixation proportions from the first to the last
two symptom intervals can predict a hypothesis change
(Hypothesis 4). Thus, by studying eye movements we can
directly observe whether coherence maximization leads to be-
lief revision during symptom presentation. Here, we com-
pared the first to the last two symptom intervals. This was a
simplification, because earlier or later hypothesis changes
were possible depending on when during the symptom pre-
sentation strong evidence for an alternative hypothesis was
presented. Incorporating information on when during the
symptom presentation a hypothesis change becomes likely
may increase the predictive power of the model of hypothesis
change. However, to enable this a more detailed understand-
ing of the timing of the belief updating process and its relation
to the execution of eye movements is required. For instance, in
the sequence a-ab-ab-b, the fourth symptom presented strong
evidence for the alternative B hypothesis. Nonetheless, even
participants who eventually chose the B chemical gazed lon-
ger toward the A than the B chemical when considering this
piece of information. This result may have been due to the
leading A hypothesis and ab symptoms being initially
interpreted as support for A, or it may be an artifact of gaze
allocation being slower than the memory updating process.
The results provide only a first step in studying hypothesis
changes by applying memory indexing. Future research is
needed to clarify the exact timing between eye movements
and belief updating processes, and thus make more specific
predictions about hypothesis change.

By separating the fourth symptom interval and the response
interval, the gaze cascade effect could be observed more

clearly in this study than in previous experiments. When giv-
ing their response, participants fixated longest toward the cho-
sen hypothesis (response matching, Hypothesis 5). It has been
argued that the higher fixation duration toward the chosen
option demonstrates that eye movements can influence pref-
erence judgments (see Shimojo et al., 2003, but see Glaholt &
Reingold, 2011). Indeed, manipulating eye movements can
lead to better retrieval performance (Johansson & Johansson,
2014; Scholz et al., 2016) and guiding the eyes toward salient
cue information can influence the decision strategy (Platzer
et al., 2014). Eye movements can thus be both cause and
consequence of memory retrieval (Ferreira, Apel, &
Henderson, 2008; Richardson, Altmann, Spivey, & Hoover,
2009), and they have been shown to update information pro-
cessing in memory (Spivey & Dale, 2011). However, when
gaze is not guided by a salient event in the visual world, eye
movements do not alter the processing of information inmem-
ory (Altmann & Kamide, 2007, 2009; Hoover & Richardson,
2008; Richardson & Kirkham, 2004; Richardson & Spivey,
2000; Scholz et al., 2015).

The use of ambiguous symptom sequences in this study
resulted in varying responses to the same sequence of symp-
toms. Although participants were presented with the same
symptom sequences, their interpretation differed depending
on their subjective evaluation of symptom information and
this prompted different final diagnoses. This result conforms
to research showing that identical patterns of observed events
can lead to different outcomes depending on the reasoners’
current causal beliefs (Hayes, Hawkins, Newell, Pasqualino,
& Rehder, 2014; Meder et al., 2014). The analysis of gaze
behavior by response clearly showed that the final response
developed via a process of biased symptom processing and
information distortion. For instance, in the a-ab-ab-b se-
quence, the bias toward the initially leading hypothesis
was clearly reflected in response proportions. Gaze be-
havior revealed how this advantage of the leading A
hypothesis developed, but additionally it showed how
the hypothesis change developed in trials in which the
competing B diagnosis was chosen. By directly tracing
biased symptom processing unobtrusively, memory
indexing provides strong evidence for theories postulat-
ing coherence maximizing through biased information
processing and information distortion (Kostopoulou
et al., 2012; Russo et al., 1996; Wang et al., 2006).

Bridging two lines of research, on eye movements to emp-
tied spatial locations and on diagnostic reasoning, this study
revealed to some degree the processing of ambiguous symp-
tom information and allowed deep insights into the nature and
the timing of the process of explanation. As our memory
indexing results demonstrate, tracing cognitive processes in
highly complex tasks is crucial for a better understanding of
higher cognition, and informs process models of reasoning
and decision making.
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